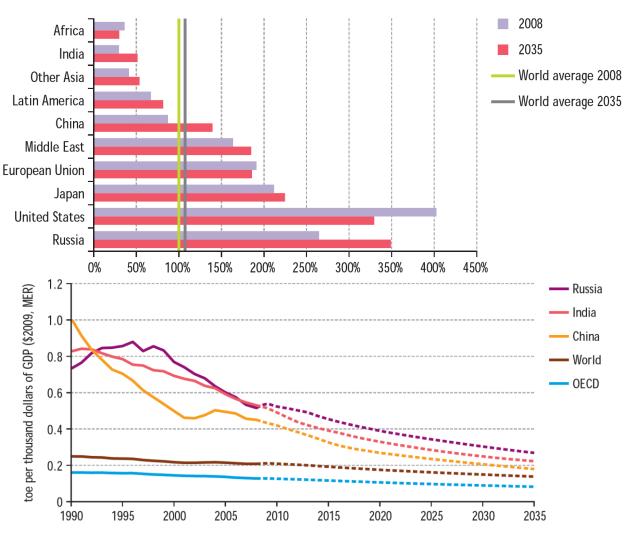


Водородные технологии для стационарной энергетики

С.П. Малышенко

Лаборатория водородных энергетических технологий Объединенный институт высоких температур РАН

h2lab@mail.ru

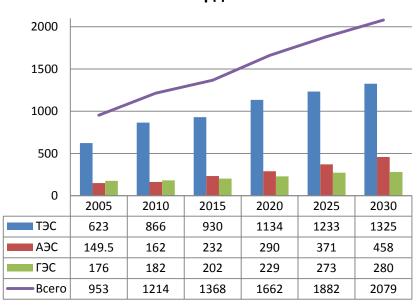


Цели энергетической стратегии 2030

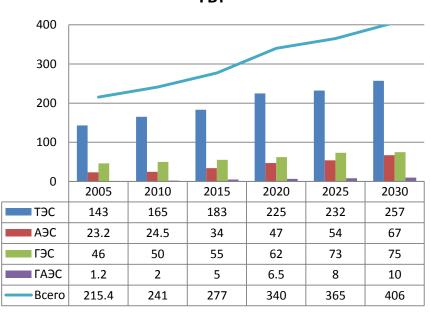
Приоритеты исследований и разработок водородных технологий определяются основными целями социально-экономического развития Российской Федерации

Ежегодный ВВП на душу населения	30 000 - 35 000 USD(2000)
Энергопотребление в тоннах условного топлива	0.32-0.34/1000 USD ВВП
Потребление электроэнергии	0.35-0.3 <mark>7</mark> кВт ч/USD ВВП
Ежегодный объём производства электроэнергии	2000 млрд. кВт ч
Энергосбережение (к 2020 г.)	400 млн. т.у.т.

Повышение эффективности использования энергии главная задача развития энергетики России


Подушевое потребление энергии в России находится на уровне наиболее развитых мировых экономик.

При этом затраты энергии на создание единицы ВВП в России существенно выше, чем в прочих развитых странах.


[IEA World Energy Outlook 2010]

Структура выработки электроэнергии к 2030 (сценарий 2000")

Структура выработки электроэнергии, млрд. кВт ч

Структура генерирующих мощностей, ГВт

Введение мощностей к 2030		
ТЭС	250 ГВт	Уголь (110 ГВт) и ПГ (150 ГВт)
АЭС	67 ГВт	Новые (44 ГВт) и модернизируемые (23 ГВт)
ГЭС	66 ГВт	Новые (20 ГВт) и модернизируемые (46 ГВт)
Маневровые	9 ГВт	ГАЭС и водородные
Распределенные	20-30 ГВт	Включая ВИЭ (10-20 ГВт)

Этапы реализации «дорожной карты» в ТЭК

	Энергетическая ст	ратегия 2030*	
2008-2	2012 201	3-2020	2021-2030
Ресурсно-инновационно развитие	ре Инвестиционно- инновационное обновление	Инноваци	ионное развитие
Создание задела по масштабному развитию и обновлению основных производственных фондов инфраструктуры энергетического сектора	Реализация масшт капитальных проек модернизации мате и технической и техн базы ТЭК России	технологий технологий ериально- принципов ологической РФ, развит	на основе новых й, оборудования и в формирования ТЭК гие новой ородной энергетики

^{*}Институт энергетической стратегии

Технологии водородной энергетики			
2008-2012	2013-2020	2021-2030	
НИР; НИОКР; Экспериментальные образцы; Прототипы	НИОКР; НИР; Прототипы; Системная интеграция; Демонстрационные проекты	ОКР; ОТР; Развитие инфраструктуры; Коммерциализация	

Водородные технологии для реализации энергетической стратегии 2030

- Создание водородных систем аккумулирования энергии и покрытия неравномерностей графика нагрузки для АЭС и ТЭС 2...5 ГВт (э);
- Создание водородных систем аккумулирования энергии для автономных и распределенных энергоустановок на основе ВИЭ до 10 ГВт (э);
- Создание технологии повышения маневренности ПГУ для их участия в ОПРЧ и НПРЧ до 20 ГВт;
- Повышение энергоэффективности ЭС с влажнопаровыми ТУ (АЭС, ГеоТЭС);
- Создание аварийных и резервных турбоустановок, в т.ч. для обеспечения пожаробезопасности;
- Создание интегрированных систем производства ЭЭ и H_2 (потребность НПЗ порядка 3...4 млн. т водорода в год)

Водородные технологии производства электроэнергии

Топливные элементы

Турбоустановки

соотношение потоков энергии:

1:10 000

отношение площадей поверхности критических сечений:

10 000 : 1

Предпочтительнее при малых мощностях

Предпочтительнее при больших мощностях

Поток энергии ограничивается диффузией носителей заряда в электролите $W^{\text{FC}}_{\text{max}} \sim 10^3 \, \text{Bt/m}^2$

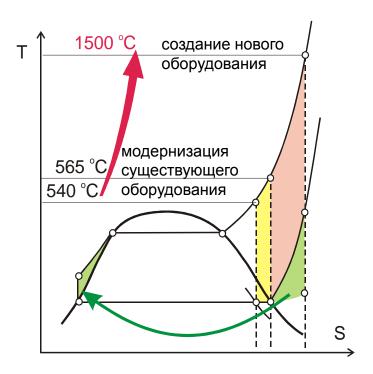
Поток энергии ограничивается скоростью звука в критических сечениях: $W^{\rm SG}_{\rm max} \sim \alpha \rho \Delta H_T \sim 10^{10} \text{--} 10^{11} \, \mathrm{BT/m^2}$ и возможностью превращения механической энергии в электрическую в турбогенераторе: $W^{\rm EG}_{\rm max} \sim \alpha \varpi H_m^2/4 \, p \sim 10^7 \, \mathrm{BT/m^2}$

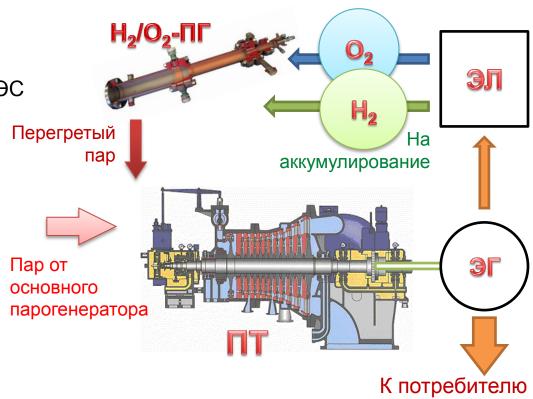
Ключевые проблемы

Создание систем топливообеспечения на основе твердофазных водородо-поглощающих материалов

Создание водородных парогенераторов и парогазогенераторов

Создание энергоустановок с использованием водородо-кислородных парогенераторов

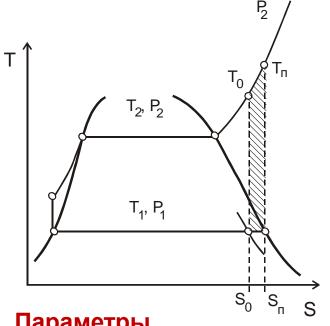

Водородо-кислородные парогенераторы



Характеристики парогенераторов	Водородо- кислородные	Традиционные (уголь, нефть, газ)
Максимальная температура пара	1000-1700 °C	500-600 °C
Способ теплопередачи	смешение	через стенку
кпд	98-99,5%	90-94 %
Объемная мощность	более 2000 МВт/м ³	менее 0,2 МВт/м ³
Материалоемкость	менее 2 кг/МВт	более 2000 кг/МВт
Время выхода на режим	менее 10 сек.	более 10000 сек.
Выбросы при работе	HET	CO_2 , NO_x , SO_x и т.д.

Водородные технологии для электростанций

Высокая температура генерируемого пара, компактность и маневренность устройств позволяют использовать водородосжигающие установки для систем аккумулирования энергии на ЭС и повышения их эффективности


Обозначения:

 H_2/O_2 -ПГ — водородно-кислородный парогенератор; ПТ — паровая турбина; ЭГ — электрогенератор; ЭЛ — электролизер; O_2 , H_2 — хранилища кислорода и водорода

Модернизация энергоблока на базе турбины К-200-130 с водородным перегревом пара

Эффект водородного перегрева пара
(увеличение расхода пара
и перегрев с 540°C до 565°C)

п порограда от от да от от от	
Расход H ₂ /O ₂ (газ) тыс. н.м ³ /ч	11.5 / 5.82
Дополнительная мощность ΔW , МВт	20.1
Удельное теплопотребление при производстве ЭЭ, г.у.т./кВт ч	262
КПД без водородного перегрева, %	40.3
КПД с водородным перегревом, %	42.3
КПД использования водорода, %	57.5

Параметры электростанции:

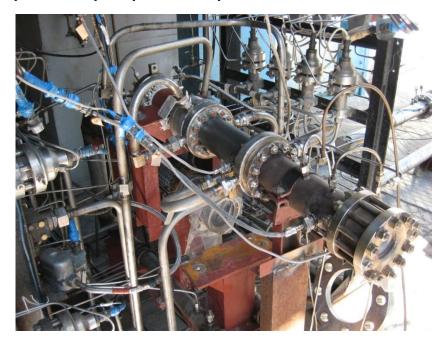
паропроизводство: 640 т/ч; W = 200 MBT; P = 130 атм, $T = 540 \,^{\circ}\text{C}$; Удельное теплопотребление при производстве ЭЭ: 275 г.у.т./кВт ч

Водородно-кислородная система покрытия неравномерностей графика нагрузки на ТЭС и АЭС

Ключевые преимущества:

- Минимальные затраты на модернизацию ТЭС и АЭС (500-700 долл./кВт).
- □ Создание системы аккумулирования электроэнергии и покрытия неравномерностей графика нагрузки на ТЭС и АЭС
- □ Повышение надежности и КПД электростанции, за счет обеспечения ее работы в базовом режиме и осуществления перегрева пара. Повышение КИУМ до 0,9

В этом случае водород и кислород производятся электролизом воды в часы провала графика нагрузки, поступают в хранилища и используются в водородокислородных парогенераторах для дополнительного получения и перегрева пара, поступающего в турбину ЭС, увеличивая её мощность на 10-15%, что допускается используемыми сегодня типами турбоагрегатов и турбогенераторов ЭС.


Дополнительный перегрев пара осуществляется путем смешения продуктов сгорания водорода в кислороде при стехиометрическом составе с основным расходом пара из парогенератора АЭС или ТЭС, поступающим в турбину.

Водородно-кислородные парогенераторы и пароперегреватели для перспективной энергетики

высокоэффективные водородосжигающие установки для получения высокотемпературного водяного пара и перегрева пара на ТЭС и АЭС.

Перспективные области применения:

- □ Создание водородных систем аккумулирования энергии и покрытия неравномерностей графика нагрузки для АЭС, угольных ТЭС и энергоустановок с ВИЭ с коэффициентом рекуперации электроэнергии не менее 50% в интервале мощностей от 0,1 до 100 МВт.
- □ Компактные источники высокотемпературного пара для технологических процессов переработки природных топлив и биомассы.
- □ Автономные системы аккумулирования и производства тепловой и электрической энергии для предприятий, имеющих водород в качестве побочного продукта производства.

Основные особенности:

- · Высокая удельная мощность
- · Высокая температура пара (до 1700 K)
- · Минимальное время запуска (менее 10 сек)
- Экологическая чистота

Водородно-кислородная пиковая надстройка для турбины К-220-44 Нововоронежской АЭС

Параметр	Номинальный режим	Пиковый режим с водородно- кислородной надстройкой	
Мощность турбоустановки	220 МВт	231 МВт, прирост 5%	
КПД номинальный	35%	36,4%	
КПД средний реальный	31%	31,3%, с учетом затрат на электрол	ИЗ
Оценка характеристик водоро	одно-кислородной п	іковой надстройки	
Вырабатываемая мощность		11 МВт	
Требуемая тепловая мощность		30.2 МВт	
КПД использования водорода		56,4%	
Время работы пиковой надстро	йки в неделю	2 ч	
Производительность электроли	зеров (наработка 140	ч в неделю) 144 н.м³/ч	
Стоимость электролизеров		33,5 млн. руб	Ď.
Объем хранилищ водорода/кис	порода	412 / 208 н.м	3
Стоимость хранилищ (в стальны	ых трубах 1420х18.7)	8,3 млн. руб	•
Суммарная стоимость основного оборудования пиковой надстройки		ой надстройки 118,8 млн. ру	б.
Стоимость создания системы, включая постройку сооружений		ружений 178,2 млн. ру	б.
Удельные капвложения в пиков	ую надстройку	16200 руб./кЕ	Вт
Увеличение стоимости энергобл	тока	2,1%	

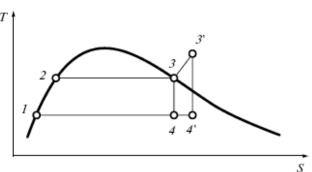
Участие ПГУ с использованием водорода в нормированном первичном регулирование частоты

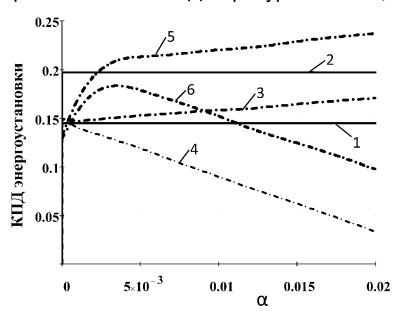
Требования и возможность участия энергоблока в НПРЧ (Стандарт РАО «ЕЭС России» СТО 17330282.29.240.002-2007)

Показатель	Нормальный режим		Аварийнь	ый режим
Время	за первые 10 с	за 30 с	за первые 10 с	за 30 с
Увеличение мощности (min) согласно стандарту	2,5% N _{ном} (11,2 МВт)	5% N _{ном} (22,5 МВт)	6,25% N _{ном} (28,1 МВт)	12,5% N _{ном} (56.2 МВт)

Увеличение мощности при разных способах управления

Воздействие на ГТ:


нормальная скорость 11 МВт/мин	3,7 МВт	12 МВт		
+ воздействие на поворотную диафрагму ПТ	5,8 МВт	18,3 МВт	не рассматривается	
+ включение двух ВКП	Выполнение стандарта	Выполнение стандарта		
допустимая скорость 30 МВт/мин	10 МВт		10 МВт	
+ воздействие на поворотную диафрагму ПТ	Выполнение стандарта	Выполнение стандарта	12,1 МВт	Выполнение стандарта
+ включение двух ВКП			28,7 МВт	


Водородно-кислородная система дополнительного перегрева пара для ГеоТЭС

Парогенераторы ГеоТЭС производят насыщенный или слабоперегретый пар, используемый во влажнопаровых турбинах с относительно низким КПД – от 12 до 18%.

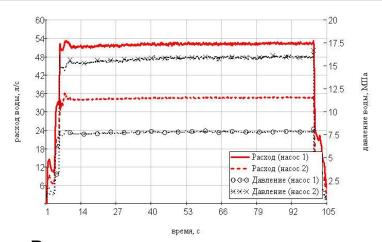
Перегрев насыщенного пара из основного парогенератора смешением с продуктами сгорания водорода в кислороде при стехиометрическом составе позволяет заменить низкоэффективные влажнопаровые турбины не турбины на перегретом паре и повысить КПД паротурбинного цикла.

Термодинамический цикл ГеоТЭС с перегревом пара

Прирост КПД ГеоТЭС при замене влажнопаровой турбины турбиной на перегретом паре

- 1 с влажнопаровой турбиной без перегрева пара;
- 2 с турбиной на перегретом паре;
- 3 с перегревом пара на влажнопаровой турбине (без учета электролиза);
- 4 с перегревом пара на влажнопаровой турбине (с учетом электролиза);
- 5 с перегревом пара и при установке турбины на перегретый пар (без учета электролиза),
- 6 с использованием перегрева и при установке турбины на перегретый пар (электролиз учтен).

Разработка аварийных и резервных водородных ПТУ


Водородно-кислородные энергоустановки— эффективные и компактные автономные аппараты, использующие водород и кислород для производства электроэнергии

Экспериментальная водородно-кислородная паротурбинная энергоустановка мощностью до 5 МВт на испытательном стенде (КБХА и ОИВТ РАН)

Основные параметры:

- □ Время запуска и выхода на основной режим менее 10 сек
- □ Удельная мощность 32 кВт/кг
- □ Расчетный КПД более 30%

Результаты экспериментов с двумя водяными насосами в качестве нагрузки

Создание огневого блока

Научно-технические барьеры

- 1. Обеспечение эффективного смесеобразования в камере сгорания, высокой полноты сгорания стехиометрической смеси при давлениях 3...10 МПа, подавление эффектов закалки состава;
- 2. Обеспечение защиты огневого дна при возникновении обратных течений в камере сгорания;
- 3. Обеспечение надежного охлаждения КС при наличии ограничений на расходы охлаждающей воды и при переменных режимах работы;
- 4. Обеспечение эффективного смешения компонентов и испарения воды в камере испарения, обеспечение равномерного поля температур на выхлопе.

Инновационные решения

- 1. Струйные форсунки топлива и окислителя с оптимизированными углами встречи и импульсами струй;
- 2. Создание восстановительной среды вблизи огневого дна;
- 3. Уменьшение концентрации пара в зоне горения за счет разделения потока охладителя на внутренний и внешний;
- 4. Двух- или многокаскадная система подачи балластировочного компонента в камеру испарения.

Оптимизация конструкции смесительных головок по результатам испытаний

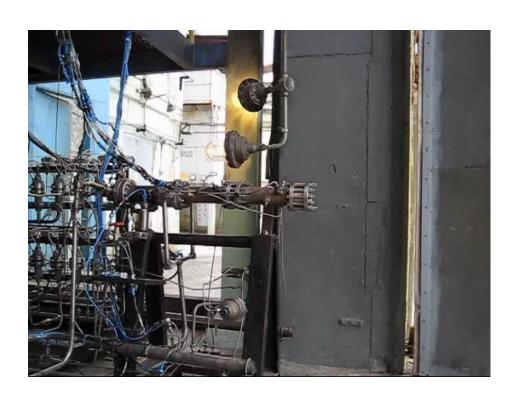
Конструкция смесительной головки с соосноструйными форсунками

Доля неконденсирующихся газов в паре

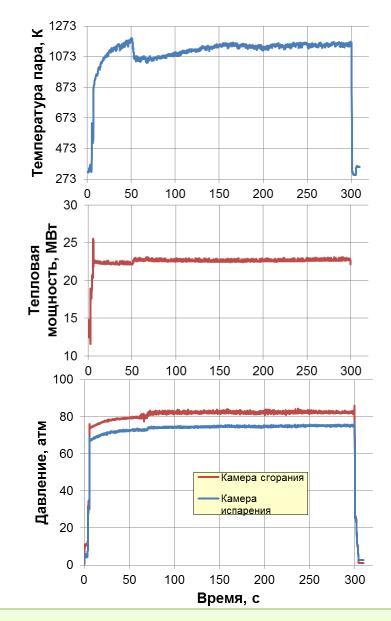
Наименование	Объемная
	доля, %
Водород	9,6
Кислород	5,82

Конструкция смесительной головки со струйно-струйными форсунками с дополнительными форсунками водорода

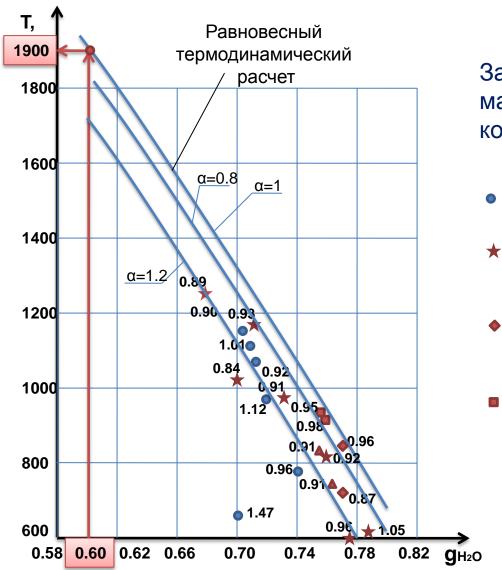
Наименование	Объемная доля, %
Водород	0,39
Кислород	1,18


Конструкция смесительной головки со струйно-струйными форсунками

Наименование	Объемная	
	доля, %	
Водород	0,27	
Кислород	1,04	



Результаты длительных огневых испытаний



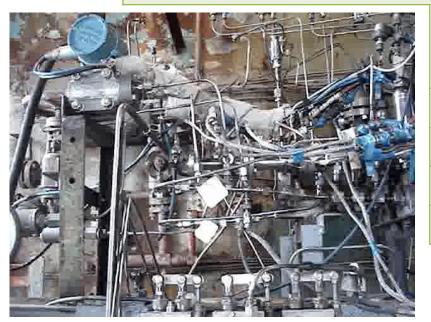
Длительность
Расход водорода
Тепловая мощность
Температура пара
Давление пара

300 с 2 н.м³/с 23,5 МВт 1150 К 75 атм

Сравнение с теорией

Зависимость температуры пара от массовой доли воды при различных коэффициентах избытка окислителя

- Смесительная головка с соосноструйными форсунками;
- Смесительная головка со струйными форсунками с пересекающимися струями под углом θ;
- Смесительная головка со струйными форсунками с пересекающимися струями под углом θ/2;
- Смесительная головка со струйными форсунками с пересекающимися струями с дополнительными форсунками водорода.


Разработка водородо-кислородных парогенераторов

Выполнены исследования процессов парогенерации в устройствах различной мощности (20-150 кВт, 10-25 МВт)

Разработки технологии эффективного смесеобразования, подавления эффектов закалки, сжигания стехиометрических смесей компонентов, тепловой стабилизации огневого блока, управления процессом генерации пара

Разработаны, созданы и испытаны экспериментальные H2/O2 парогенераторы

Модель	Тепловая мощность	Максимальные параметры пара		
		<i>T</i> , K	<i>P</i> , MΠa	
20 K	20-100 кВт	1100	0,5	
100 K	100-150 кВт	1000	4	
10 M	10-20 МВт	1200	7	
25 M	25-30 МВт	1300	7,5	

Кооперация ОИВТ РАН и ОАО КБХА

Водородо-кислородные энергоустановки для автономного, резервного и аварийного энергообеспечения

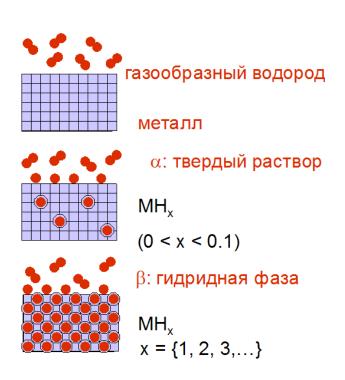
Водородо-кислородная турбоустановка ОАО КБХА мощностью 5 МВт с парогенератором ОИВТ РАН.

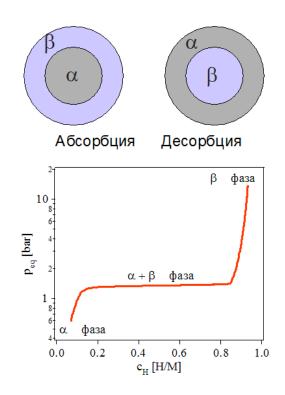
Использование:

- выработка электроэнергии на предприятиях, имеющих водород в качестве побочного продукта;
- аварийные системы пожаротушения;
- создание резервных и пиковых мощностей.

Преимущества:

- Высокая удельная мощность.
- Минимальное время запуска (менее 10 сек.).
- Экологическая чистота при работе установки.
- Высокий КПД (более 30 %).
- Простота конструкции и низкая удельная стоимость оборудования (менее 300 долл/кВт).


СОЗДАНИЕ ЭНЕРГОУСТАНОВОК С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНЫХ ВОДОРОДОПОГЛОЩАЮЩИХ МАТЕРИАЛОВ



Металлогидридные системы очистки и аккумулирования водорода

Решаемая задача: устранение влияния крайней неравномерности распределения по времени потока энергии ВИЭ с помощью водородного аккумулирования энергии

Назначение технологии: обеспечение автономных потребителей электроэнергией и теплом от ВИЭ по нужному графику на уровне мощности 5-20 кВт

Металлогидридные системы очистки и аккумулирования водорода

Селективное поглощение водорода

(возможность очистки)

Компактно

(плотность выше, чем у жидкого водорода)

Преимущества технологии

Безопасно

(водород находится в связанном состоянии)

Дешево и эффективно

(нет затрат на сжатие или ожижение)

Использование низкопотенциального тепла

(энергоэффективные технологии)

Проблема теплопереноса

(мелкодисперсные активированные засыпки материалов обладают низкой теплопроводностью)

Научнотехнические барьеры

Проблема примесей

(примеси могут заполнять поровое пространство, блокируя сорбцию, а также «отравлять» материал)

Системная интеграция

(совместная работа систем хранения водорода и топливных элементов практически не изучена)

Системы твердофазного обратимого хранения и очистки водорода, интегрированные с энергоустановками на топливных элементах

Потребители электроэнергии

системы автономного и бесперебойного энергоснабжения: узлы связи, медицинские учреждения, дата-центры и т.д.

Содержащий примеси технический водород

Первичные источники

энергии

Комплексный стенд 12-04 ОИВТ РАН

Топливные элементы

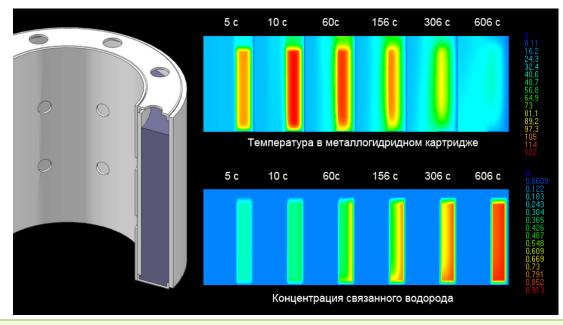
Чистый водород

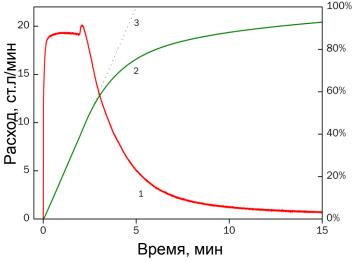
Очистка в металлогидридах:

избирательное поглощение водорода позволяет достигать высоких степеней чистоты

Потребители высокочистого водорода

Высокотехнологичные производства электронной, химической, пищевой и др. отраслей промышленности, водородоохлаждаемые турбогенераторы



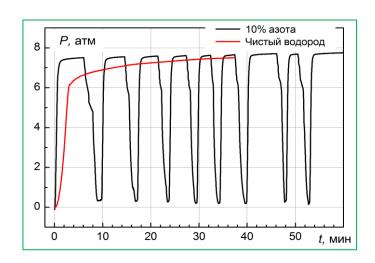

Проблема тепломассопереноса

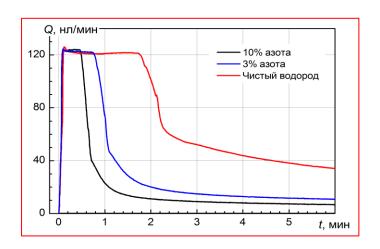
Обнаружено и исследованы эффекты кризиса тепломассопереноса в мелкодисперсной засыпке водородопоглощающего материала при сорбции и десорбции водорода.

Кризис приводит к резкому росту температуры реакционной зоны и снижению производительности устройств.

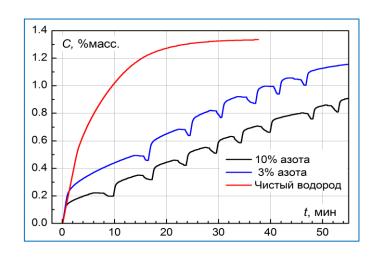
Определены условия реализации бескризисных режимов работы устройств, созданы усовершенствованные металлогидридные реакторы

Кризисные явления при зарядке металлогидридного реактора чистым водородом.


- 1 расход водорода на входе в реактор
- 2 степень заполнения реактора
- 3 бескризисный режим работы


ВЛИЯНИЕ ПРИМЕСЕЙ

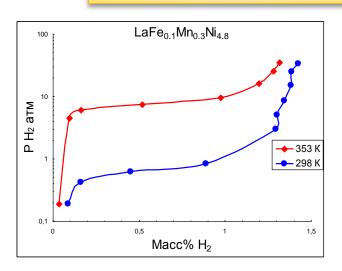
Неадсорбируемые примеси заполняют свободное пространство реактора и блокируют доступ водорода к засыпке.


Предложен и экспериментально верифицирован метод ускорения заправки реактора путем циклического удаления примесей из его свободного объема.

Давление в реакторе при зарядке

Поток водорода на входе в реактор

Концентрация водорода в засыпке водородопоглощающего материала


Разработка водородопоглощающих сплавов

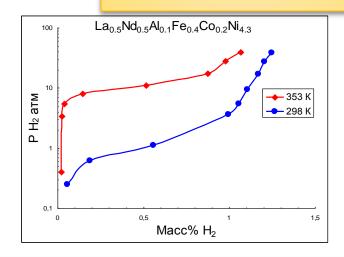
Зарядка: 25 °C, 0,66 атм

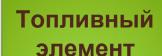
Подсистема очистки LaFe_{0.1}Mn_{0.3}Ni_{4.8}

Разрядка: 80 °C, 7,6 атм

РСТ диаграммы разработанных сплавов

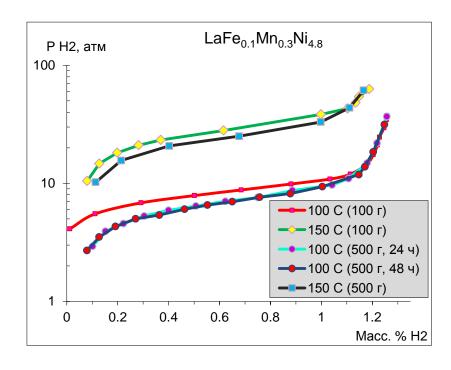
Выполнено математическое моделирование, выплавлены и испытаны образцы интерметаллических сплавов, среди которых осуществлен выбор водородопоглощающих материалов для использования в системе




Зарядка: 25 °C, 1,1 атм

Подсистема хранения $La_{0.5}Nd_{0.5}Al_{0.1}Fe_{0.4}Co_{0.2}Ni_{4.3}$

Разрядка: 80 °C, 11,6 атм

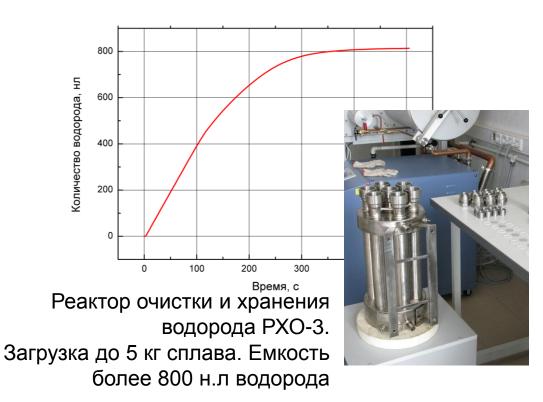


Давление на входе 4,4 – 6,5 атм

Масштабный эффект в сорбционных свойствах водородопоглощающих материалов

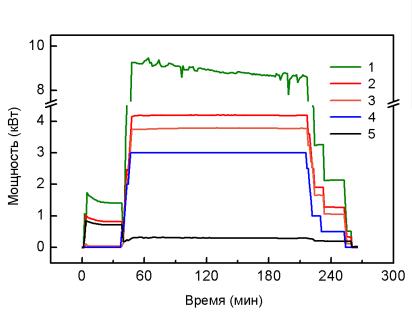
Экспериментально обнаружен новый эффект воздействия масштаба засыпки водородопоглощающих материалов на PCT-диаграммы сплавов.

Изотермы десорбции водорода образцами сплава LaFe_{0.1}Mn_{0.3}Ni_{4.8} массой 100 и 500 грамм при температуре 100 и 150 °C

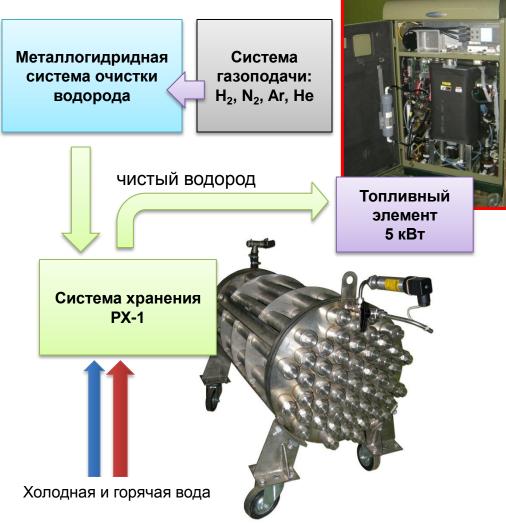

Установка УС150 для измерения изотерм сорбции водорода в образцах различных масштабов

СОЗДАНИЕ УСОВЕРШЕНСТВОВАННЫХ РЕАКТОРОВ

Металлогидридный накопитель РХ-1. Загрузка до 100 кг сплава. Емкость более 13 н.м³ водорода



Реактор высокой производительности РХО-5. Загрузка до 0,8 кг сплава. Емкость более 100 н.л водорода

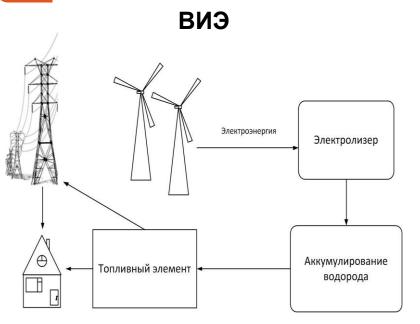


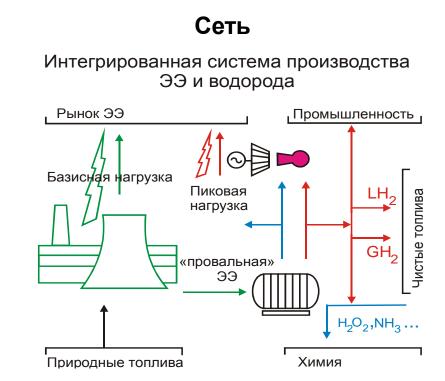
Интеграция ТЭ и металлогидридной системы

Энергетические характеристики совместной работы ТЭ и РХ-1.

1 – затраты энергии (по теплоте сгорания водорода); 2 – мощность стека ТЭ; 3 – мощность перед инвертером; 4 – потребление; 5 – собственные нужды ТЭ

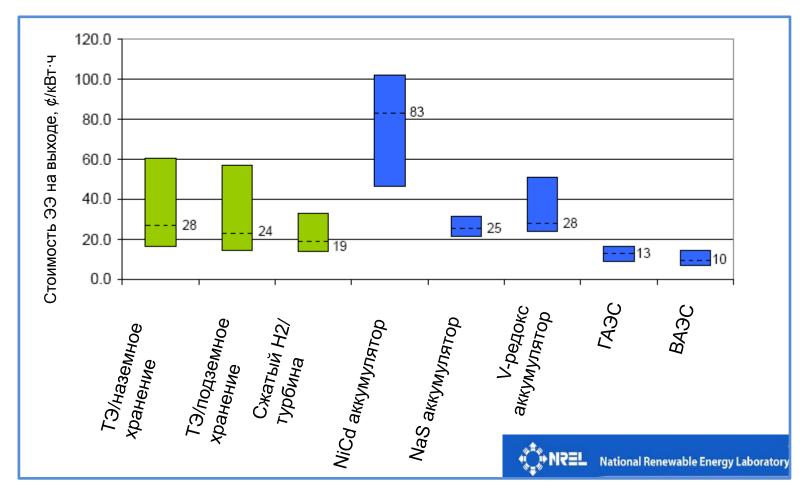
Металлогидридный блок очистки водорода для водородоохлаждаемых турбогенераторов




Создан и испытан лабораторный образец блока очистки производительностью до 5 норм. м³/ч

- Варианты использования: устройство для дополнительного повышения чистоты водорода в системе охлаждения, компенсация суточного расхода и утечки;
- Результат: повышение КПД (на величину до 0,1%), продление срока службы за счет снижения рабочего давления и уменьшения механических потерь;
- Рынок: водородоохлаждаемые турбогенераторы и синхронные компенсаторы по установленной мощности составляют 215 ГВт (66% вырабатываемой мощности).

Водородные технологии аккумулирования электроэнергии


Производство жидкого водорода за счет «провальной» энергии ЭС

	Возможный объем производства	Заводская цена жН ₂	Рыночная цена жН ₂	Чистый среднегодовой доход	Срок окупаемости
ЛАЭС	70 000 т/год	4000 \$/т	EC: 6000 \$/T	0,3-0,35 \$/кВт ч	3-5 лет
Иркутскэнерго	200 000 т/год	3500 \$/т	ЮВА: 7000 \$/т	0,4 \$/кВт ч	5-7 лет

Сравнение технологий аккумулирования электроэнергии

для уровня мощности 50 МВт при емкости системы 300 МВт-ч

Лаборатория водородных энергетических технологий ОИВТ РАН

ОИВТ РАН Ижорская 13, стр. 2 125412, Москва Российская Федерация

Тел: +7(495)362-53-11 Факс: +7(495)362-07-84

h2lab@mail.ru

Благодарю Д.О. Дуникова, В.И. Борзенко и О.В. Назарову за помощь в подготовке доклада

СПАСИБО ЗА ВНИМАНИЕ!

