Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

На правах рукописи

Аникеев Артем Андреевич

Метод расчета термодинамического состояния многокомпонентной смеси жидкостей и газов в широком диапазоне давлений и температур на основе уравнения Орнштейна-Цернике

Специальность 01.04.14 - «Теплофизика и теоретическая теплотехника»

Диссертация на соискание учёной степени кандидата физико-математических наук

Автор:

Научный руководитель: д.ф.-м.н. Губин С. А.

Москва - 2018

Оглавление

	Аннотация	4
	Введение	5
	Общая характеристика работы	5
	Содержание работы.	13
1	Широкодиапазонные уравнения состояния	
	сложных химических систем	33
	1.1 Газовые и жидкостные системы	33
	1.2 Типы замыкающих уравнений	36
	1.3 Смеси	43
	1.4 Выводы	45
2	Гермодинамическая теория интегральных	
	уравнений	47
	2.1 Численное решение уравнения ОЦ	47
	2.2 Реализация самосогласованного приложения	51
	2.3 Проверка решения на референсных	
	атомистических расчётах	52
	2.4 Выводы	59
3	Моделирование состояний на ударных адиабатах (60
	3.1 Эксперименты на ударных трубах и легкогазовых	
	пушках	60
	3.2 Методика моделирования состояний на ударных	
	адиабатах	61
	3.3 Результаты моделирования	62
	З.4 Выводы	64
4	Моделирование холодных изотермических	
	экспериментов	68
	4.1 Эксперименты на осциллирующем денситометре и аппарате Митчела	68

	4.2 Результаты моделирования	69
	4.3 Выводы	84
5	Модель химического реагирования	89
	5.1 Метод экстремума характеристических функций	89
	5.2 Моделирование экспериментов с диссоциацией и	
	рекомбинацией	93
	5.3 Выводы	99
	Заключение	104
	Литература	106

Аннотация

В задачах геофизики, астрофизики, физики ударных и детонационных волн, а также при проектировании энергетических установок требуются высокоточные широкодиапазонные многокомпонентные уравнения состояния. В то же время, методы первопринципного моделирования часто оказываются слишком ресурсоёмкими для прикладных задач.

В данной работе рассматривались смеси из различных полярных и неполярных молекул, которые моделировались сферически симметричными потенциалами взаимодействия с возможностью использования температурной поправки для глубины потенциальной ямы в случае полярных молекул.

Целью данной работы является разработка широкодиапазонного уравнения состояния многокомпонентных газовых и жидкостных химических реагирующих систем на основе замыкающего уравнения для произвольного числа компонентов без использования модели эффективного флюида Ван-дер-Ваальса.

Введение

Общая характеристика работы.

Актуальность темы.

Развитие современной науки и техники предъявляет высокие требования к точности термодинамического моделирования жидкостей и газов в широком диапазоне состояний давлений и температур. Подобные задачи встречаются при проектировании энергетических установок, геофизике, астрофизике, физике ударных и детонационных волн. При этом, ресурсоёмкость первопринципного атомистического молекулярного моделирования как методом молекулярной динамики, так и методом Монте-Карло, ограничивает возможность их применения для широкого круга работ. Трудности вызывают итеративные алгоритмы, связанные с изменением химических или кинетических параметров во внешнем цикле, многократно увеличивающие время вычисления.

В ЭТИХ условиях находят широкое применение обоснованные теоретически аналитические модели уравнения состояния на основе теории молекулярных функций распределения, в том числе: термодинамическая теория возмущений; термодинамическая теория уравнений термодинамическая интегральных и вириальная теория. Сложность заключается В TOM, разрабатывались что эти теории изначально для однокомпонентных термодинамических систем. Моделирование многокомпонентных систем традиционно проводилось эффективного С помощью модели однокомпонентного флюида Ван-дер-Ваальса, имеющей точность. Данная ограниченную работа посвящена термодинамической теории интегральных уравнений, поскольку она может быть расширена на смесевые системы с произвольным числом компонентов без использования приближения Ван-дер-Ваальса.

В рамках теории интегральных уравнений, частное взаимодействие молекул описывается замыкающим уравнением. При моделировании газов и жидкостей в широком диапазоне давлений и температур, действуют как

взаимодействия притягивающие, так и отталкивающие использовать молекул, ЧТО вынуждает составные многоасимптотные замыкающие уравнения. Наибольший имеют самосогласованные диапазон применимости уравнения, которых константы, замыкающие в переключающие тип взаимодействия, находятся варьированием исходя из численного выполнения общих законов термодинамики непосредственно в моделируемом состоянии в момент вычисления. Одним из таких уравнений является уравнение гиперсетевого-цепного мягкоядерного среднесферического приближения HMSA (Hypernetted Chain Mean Spherical Approximation).

В литературе можно найти большое число работ с использованием многокомпонентных несамосогласованных замыкающих уравнений для ограниченных диапазонов термодинамических параметров. Число известных многокомпонентных самосогласованных замыкающих остаётся небольшим. В уравнений данной работе уравнение состояния на предлагается основе нового многокомпонентного самосогласованного замыкающего MHMSA являющегося уравнения расширением классического уравнения HMSA.

Цель работы.

Целью данной работы является разработка широкодиапазонного уравнения состояния многокомпонентных газовых и жидкостных химических реагирующих систем на основе замыкающего уравнения для произвольного числа компонентов без использования модели Ван-дер-Ваальса.

Для этого рассматривались смеси из различных полярных и неполярных молекул, которые моделировались сферически симметричными потенциалами взаимодействия EXP-6 с возможностью использования температурной поправки для глубины потенциальной ямы $\epsilon(T)$ в случае полярных молекул. Параметры прямых и перекрёстных потенциалов брались из литературы. При отсутствии данных для перекрёстных параметров, они рассчитывались по правилам Лоренца-Берфелота или другим комбинационным правилам. По заданным параметрам потенциалов, мольным долям, температуре и плотности находились давление, внутренняя энергия и радиальные функции распределения молекул. На основе предлагаемого уравнения состояния был построен термодинамический код, позволяющий находить точку термодинамического равновесия в химических реагирующих системах. Моделированием ударноволновых экспериментов с диссоциацией и рекомбинацией показано согласие с опубликованными экспериментальными данными.

Были решены следующие задачи:

- Разработано новое многокомпонентное замыкающее уравнение МНМЅА, уравнение состояния многокомпонентной смеси в общем виде и метод нахождения термодинамического равновесия в химических реагирующих системах на его основе.
- Реализован алгоритм решения термодинамических интегральных уравнений.
- Разработан алгоритм анализа погрешностей на молекулярной функции распределения.
- Реализован и оптимизирован параллельный на общей памяти программный код для термодинамического равновесного расчета химических реагирующих многокомпонентных смесей.
- Проведено 2-х и 4-х компонентное моделирование состояний на ударных адиабатах жидких N₂, O₂, CO₂ до давления 90 ГПа.
- Проведено З-х компонентное моделирование изотермических экспериментов CO₂-CH₄-N₂ при температурах 323.15 — 573.15 К при давлениях 19.94 — 99.93 МПа.
- Проведено 3-х компонентное моделирование изотермических экспериментов NH₃-N₂-H₂ при температурах 323 — 573 К при давлениях 7.3 — 156.7 МПа.
- Показано хорошее согласие разработанного уравнения с результатами молекулярного Монте-Карло

моделирования для всех проведённых моделирований во всех заявленных диапазонах со значительным преимуществом над однокомпонентными уравнениями с использованием модели эффективного флюида Вандер-Ваальса.

- Показано хорошее согласие полученных радиальных функций распределения молекул с функциями, полученными из Монте-Карло моделирования.
- Проведено 2-х компонентное моделирование ударной адиабаты жидкого N₂ и 3-х компонентное — жидкого NH₃ с отысканием точки термодинамического равновесия с учётом диссоциации и рекомбинации. Показано хорошее согласие параметров в найденной точке равновесия с экспериментальными данными.
- Показано, что применение парных межмолекулярных потенциалов, найденных с использованием модели эффективного однокомпонентного флюида Ван-дер-Ваальса, приводит к отклонению результатов точного многокомпонентного моделирования Монте-Карло от экспериментальных данных.
- Показано, что незначительные расхождения в значениях термодинамических параметров, найденных на основе различных уравнений состояния, могут приводить к значительным отклонениям точек термодинамического равновесия.

Основные положения, выносимые на защиту.

- Многокомпонентное самосогласованное замыкающее уравнение MHMSA для решения системы интегральных уравнений теории жидкости.
- Уравнение состояния многокомпонентной смеси в общем виде и метод моделирования термодинамического равновесия на его основе.
- Методика анализа погрешностей молекулярной функции распределения и уменьшения их влияния

на сходимость интегральных уравнений на ранних итерациях расчетов.

 Применение парных межмолекулярных потенциалов, найденных с использованием модели эффективного однокомпонентного флюида Ван-дер-Ваальса, приводит к отклонению результатов точного многокомпонентного моделирования Монте-Карло от экспериментальных данных.

Научная новизна.

- Разработано многокомпонентное самосогласованное замыкающее уравнение и уравнение состояния на его основе, позволяющее непрерывно моделировать газовые и жидкостные многокомпонентные термодинамические системы в широком диапазоне давлений и температур с использованием одного набора параметров парных потенциалов молекулярного взаимодействия.
- Показано отрицательное влияние приближения однокомпонентного эффективного флюида Ван-дер-Ваальса на опубликованные в справочной литературе параметры парных потенциалов молекулярного взаимодействия и поправки к ним.
- Показано хорошее согласие результатов расчетов уравнения разработанного MHMSA на основе молекулярного Монте-Карло С результатами моделирования для всех проведённых моделирований во всех заявленных диапазонах со значительным преимуществом над однокомпонентными уравнениями с использованием модели эффективного флюида Вандер-Ваальса.
- Показано высокое качество получаемых из предлагаемого уравнения молекулярных функций распределения и их пригодность для теоретического анализа широкого круга сложных химических систем.
- Показана применимость модели построения самосогласованных замыканий на основе парциальных

выражений для изотермической сжимаемости и осреднения разноимённых интерполирующих параметров для газовых и жидкостных (флюидных) систем в широком диапазоне давлений и температур.

 Для разработанного уравнения состояния построен метод отыскания точки термодинамического равновесия в химических реагирующих системах и показано его согласие с экспериментальными данными.

Научная и практическая значимость работы.

Научно значимым результатом является возможность построения многокомпонентного самосогласованного замыкания на основе асимптоты гиперсетевогоцепного приближения мягкоядерного И асимптоты среднесферического приближения моделей молекулярного взаимодействия. Применённая в данной работе схема построения многокомпонентных самосогласованных замыканий получила новое подтверждение и представляет интерес для моделирования других термодинамических Показано, что систем. данная схема позволяет получать более точные результаты термодинамического моделирования, чем при использовании общепринятого приближения эффективного однокомпонентного флюида Ван-дер-Ваальса. С практической точки зрения получена возможность значительного сокращения ресурсоёмкости термодинамического моделирования многокомпонентных газовых и жидкостных химических реагирующих систем в широком диапазоне давлений и температур по сравнению с молекулярно-динамическим методом и молекулярным методом Монте-Карло при сохранении высокой точности термодинамических параметров и молекулярных функций распределения. Выбор термодинамических систем для сравнения с экспериментальными данными в виде продуктов диссоциации И рекомбинации $C_w H_x N_y O_z$ обусловлен потребностью в данном типе уравнений состояния таких областях науки как астрофизика планет-гигантов, физика кинетических явлений, ударных и детонационных волн. Возможность моделирования широкого диапазона давлений и температур в химически реагирующих системах представляет интерес для непрерывного моделирования расширения продуктов детонации от параметров фронта волны до атмосферных условий, что необходимо при изучении последствий природных катастроф и аварий на потенциально опасных промышленных объектах.

Достоверность научных положений, результатов и выводов.

Достоверность полученных результатов подтверждается согласием с результатами самостоятельно проведенного первопринципного молекулярного моделирования, опубликованными экспериментальными данными и известными результатами моделирования других авторов.

Апробация работы.

Полученные в данной работе результаты были представлены на следующих конференциях: «Научная сессия НИЯУ МИФИ» (Москва, 2012, 2013, 2014, 2015); «Ежегодная научная конференция отдела горения и взрыва ИХФ РАН» (Москва, 2014, 2015); «9-th International Conference of Continuous and Pulse Detonation» (Pushkin, St. Petersburg, Russia, 2014); «XXX International Conference on Iteraction of Intense Energy Fluxes with Matter» (Elbrus, Kabardino-Balkaria, Russia, 2015); «XVII Харитоновские тематические научные чтения «Экстремальные состояния вещества. Ударные волны. Детонация» (Саров, Россия, 2015);«Conference of Physics of Nonequilibrium Atomic Systems and Composites» (Moscow, Russia, 2015); «Problems of Mathematical Physics and Mathemaatical Modelling» (Moscow, Russia, 2017).

Личный вклад.

В диссертации представлены результаты работ, проведённых автором лично либо в соавторстве с другими исследователями. Поиск и подготовка экспериментальных данных по ударноволновому и изотермическому сжатию веществ и смесей, справочной литературы по параметрам потенциалов и референсным результатам атомистического моделирования проведён совместно с Богдановой Ю. А., Губиным С. А., Маклашовой И. В. Идея разработки многокомпонентной версии замыкающего уравнения HMSA принадлежит Викторову С. Б. Анализ альтернативных уравнений, замыкающих разработка механизма многокомпонентного самосогласованности уравнения решения полученных MHMSA, построение алгоритма интегральных уравнений, методика анализа погрешностей на функции распределения, реализация и оптимизация параллельного на общей памяти программного кода, построение метода отыскания точек термодинамического равновесия, моделирование экспериментов, референсные атомистические расчёты молекулярным методом Монте-Карло, публикация и представление на конференциях полученных результатов уравнения MHMSA проведены автором самостоятельно.

Публикации.

Представленные в диссертации результаты опубликованы в соавторстве в 26 работах [1] ([2]) [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27], из которых 6 опубликованы в журналах, входящих в перечень ВАК [1] [3] [4] [14] [18] [21] и 9 входят в реферативные базы данных Scopus или Web of Science [2] [12] [13] [15] [17] [20] [24] [25] [26].

Соискатель является ведущим автором 11 работ [1] ([2]) [3] [4] [5] [6] [7] [10] [11] [12] [13] [27], среди которых 3 опубликованы в журналах, входящих в перечень ВАК [1] [3] [4] и 3 входят в реферативные базы данных Scopus или Web of Science [2] [12] [13].

Объем и структура диссертации.

Диссертация состоит из введения, 5 глав, заключения и списка использованной литературы, включающего 124 источника. Общий объем работы составляет 126 страниц, содержащие 16 рисунков и 26 таблиц.

Содержание работы.

Во введении приводится описание актуальности построения уравнения состояния на основе многокомпонентного самосогласованного замыкания, формулируются цель работы, выносимые на защиту положения, аргументируется научная новизна, научная и практическая значимость работы.

Глава 1.

В первой главе приводится анализ и обзор литературы, уравнениям посвяшённой аналитическим состояния основе молекулярных функций распределения на И парных потенциалов взаимодействия. Рассматриваются опубликованные данные по имеющимся ограничениям модели однокомпонентного эффективного флюида Ван-Проводится анализ опубликованных дер-Ваальса. в литературе замыкающих уравнений для термодинамической теории интегральных уравнений, рассматриваются существующие варианты построения многокомпонентных самосогласованных замыканий апробация И ИХ на различных термодинамических системах. На основании этих данных делается вывод о перспективности расширения замыкающего уравнения HMSA на многокомпонентные смеси по аналогии с уравнением PHNC. Обосновывается выбор парных молекулярных потенциалов взаимодействия EXP-6.

Глава 2.

Во второй главе приводится математическая модель предлагаемого уравнения состояния, полученная для сферически симметричных парных взаимодействий молекул. Рассматриваются следующие понятия:

• $g_{ij}(r)$ — радиальная функция распределения, определяющая вероятность обнаружения молекулы компонента *i* на расстоянии от *r* до r + dr от молекулы компонента *j*;

- с_{ij}(r) парная корреляционная функция, отражающая корреляции координат пары молекул без учёта корреляций остальных молекул в системе;
- *h_{ij}(r)* полная корреляционная функция, учитывающая все парные взаимодействия.

Исходя из определения, полная корреляционная функция может быть найдена как:

$$g_{ij}(r) \stackrel{\text{def}}{=} h_{ij}(r) + 1 \tag{1}$$

Из определения парной корреляционной функции следует уравнение Орнштейна-Цернике:

$$h_{ij}(r) \stackrel{\text{def}}{=} c_{ij}(r) + \sum_{k=1}^{m} \rho_k \int c_{ik}(\vec{s}) h_{kj}(|\vec{r} - \vec{s}|) d\vec{s}$$
(2)

где m — количество компонент, ρ_k — численная плотность компонента k, \vec{r} — координата второй частицы, \vec{s} — координата третьей частицы.

В данной работе используется уравнение Орнштейна-Цернике в виде разложения до второго порядка точности, отражающего возможность взаимодействия молекул как непосредственно, так и через произвольную третью частицу. Возможностью воздействия цепочки четырёх и более частиц в данной работе пренебрегается, однако в литературе можно найти выкладки для более высоких порядков разложения, требующихся для более сложных систем и анализ применимости подобного приближения.

Для замыкания системы уравнений (1, 2) требуется третье уравнение, называемое замыкающим. В данной работе предлагается замыкающее уравнение MHMSA (3), представляющее собой интерполяцию по радиусу между точным решением в гиперсетевом-цепном приближении HNC для притягивающих полиномиальных взаимодействий на больших радиусах и среднесферическом мягкоядерном приближении MSA для отталкивающих экспоненциальных взаимодействий на малых радиусах:

$$g_{ij}(r) = e^{-\beta \phi_{ij}^R(r)} \left(\frac{e^{-f_{ij}(r) \left[h_{ij}(r) - c_{ij}(r) - \beta \phi_{ij}^A(r) \right]} - 1}{f_{ij}(r)} + 1 \right)$$
(3)

где $\beta = \frac{1}{k_B T}$ — обратная температура, k_B — константа Больцмана, T — температура, ϕ_{ij}^R — отталкивающий потенциал, ϕ_{ij}^A — притягивающий потенциал, f_{ij} — «переключающая функция» с неизвестным интерполяционным параметром λ_{ij} :

$$f_{ij}(r) = 1 - e^{-\lambda_{ij}r} \tag{4}$$

 m^2 Для численного поиска -mнеизвестных параметров любые λ_{ij} могут быть использованы термодинамические соотношения. Например, для произвольных систем выполняются парциальные соотношения для изотермической сжимаемости и уравнения Максвелла:

$$\left(\frac{\partial(\beta P)}{\partial\rho_i}\right)_T \equiv 1 - 2\pi \sum_{j=1}^m \rho_j \int_0^{+\infty} c_{ij}(r) r^2 dr$$
(5)

$$\left(\frac{\partial E}{\partial V}\right)_T = T^2 \frac{\partial}{\partial T} \left(\frac{P}{T}\right)_V \tag{6}$$

где *P* — давление, *E* — внутренняя энергия, *V* — объем.

Давление для этих выражений может быть найдено через вириальное уравнение:

$$P = \frac{\rho}{\beta} - \frac{2}{3}\pi \sum_{i=1}^{m} \sum_{j=1}^{m} \rho_i \rho_j \int_0^{+\infty} g_{ij}(r) \frac{\partial \phi_{ij}(r)}{\partial r} r^3 dr$$
(7)

где ρ — численная плотность, ϕ_{ij} — парный потенциал молекулярного взаимодействия.

К сожалению, число независимых термодинамических соотношений для произвольной системы недостаточно для замыкания системы уравнений. В данной работе использовалось следующее приближение: для поиска одноимённых интерполяционных параметров применялись выражения для парциальной сжимаемости (5), полученные из определения и численным дифференцированием вириального уравнения (7):

$$\min_{\vec{\lambda_{ii}}} \left[\left(\frac{\partial(\beta P)}{\partial \rho_i} \right)_T - \left(\frac{\partial(\beta P)}{\partial \rho_i} \right)_T^{vir} \right]$$
(8)

а разноимённые параметры находились осреднением одноимённых:

$$\lambda_{ij} = \frac{\lambda_{ii} + \lambda_{jj}}{2} \tag{9}$$

В ходе работы было получено уточнённое соотношение для осреднения интерполяционных параметров:

$$\lambda_{ij} = \frac{\lambda_{ii}r_{ii} + \lambda_{jj}r_{jj}}{2r_{ij}} \tag{10}$$

где r_{ij} — радиус минимума парного потенциала взаимодействия.

При построении алгоритма решения полученных интегральных уравнений был предложен метод анализа погрешностей функции распределения, основанный на следующих принципах:

- Численно полученные значения сеточной функции распределения имеют различные погрешности на различных участках ввиду использования численных выражений для значений, сильно отличающихся по порядку величины.
- Погрешности различных участков функции распределения следует оценивать по вносимому ими вкладу в погрешность измеряемых размерных величин.
- Сложным участком является плато функции на малых радиусах (Рис. 2).
- Значение функции распределения по определению не может быть меньше нуля.

Реализованный программный код тестировался на опубликованных в литературе классических результатах молекулярного Монте-Карло моделирования Говарда-Фрида в широком диапазоне значений обратной температуры $\beta = 0.01 - 0.2$, численной плотности $\rho = 0.7 - 5.8$ и жесткостей отталкивания парного потенциала EXP-6 $\alpha = 11.5 - 15.5$. Отклонение от опубликованных результатов не превысило 2%.

Глава З.

В третьей главе описывается моделирование состояний при ударноволновом сжатии жидких СО₂, N₂, O₂. При моделировании использовались сферически симметричные парные потенциалы взаимодействия EXP-6 с параметрами из работ Викторова С. Б. Эти параметры были найдены моделирования решением обратной задачи ударных волн и изотермического сжатия методом экстремума характеристических функций С использованием термодинамической теории возмущений Канг-Ли-Ри-Ри (KLRR-T) в приближении модели эффективного флюида Ван-дер-Ваальса (vdW1f). однокомпонентного Химический состав продуктов, полученный в результате диссоциации и рекомбинации моделировался аналогичным образом С использованием калорических уравнений состояния ИВТАНТЕРМО.

Точность полученного уравнения состояния проверялась совместным сравнением результатов моделирования в приближениях MHMSA, HMSA+vdW1f, KLRR-T+vdW1f с результатами молекулярного Монте-Карло моделирования с тем же химическим составом, полученным в программном комплексе MCCCS Towhee для 1000 частиц на 500 000 конфигураций.

В начале была смоделирована ударная адиабата жидкого N_2 до давления 90 ГПа с исходным состоянием при температуре 77 К, плотности 0.808 г/куб.см, внутренней энергии -2.842 ккал/моль. Химический состав продуктов моделировался в виде двухкомпонентной системы N_2 -N. Затем, была смоделирована ударная адиабата в жидком O_2 с исходным состоянием при температуре 77 К, плотности 1.202 г/куб.см, внутренней энергии -1.413 ккал/моль. Использовался двухкомпонентный состав продуктов O_2 -O.

Наибольший интерес представляло моделирование ударной адиабаты в жидком СО₂ (Рис.1) с исходным состоянием при температуре 218 К, плотности 1.1173 внутренней энергии -98.486 ккал/моль. г/куб.см, Значительная разница параметров парных потенциалов молекул СО₂ и О понижает точность модели эффективного однокомпонентного флюида. Химический состав моделировался в виде двухкомпонентной смеси CO₂-O и четырёхкомпонентной CO₂-CO-O₂-O. При двухкомпонентном моделировании использовалась неаддитивная поправка для перекрёстных параметров парных потенциалов, найденная Викторовым С. Б.

Рис. 1: Ударная волна в СО₂.

Анализируя средние и максимальные отклонения полученных результатов (Таб.1) от данных молекулярного Монте-Карло моделирования, можно сделать следующие выводы:

- Погрешность обоих однокомпонентных уравнений KLRR-T HMSA И при использовании вместе С приближением эффективного однокомпонентного vdW1f удовлетворительна флюида N_2 , для O_2 И неудовлетворительна для СО₂.
- Погрешность обоих уравнений с использованием vdW1f растёт с разницей параметров межмолекулярных

Таблица 1: Максимальные и средние отклонения давления при моделировании ударных адиабат.

MAX,%	$\delta^{MC}_{KLRR-T+vdW1f}$	$\delta^{MC}_{HMSA+vdW1f}$	δ^{MC}_{MHMSA}
$N_2 \ \mathbf{2f}$	3.2	3.9	1.8
$O_2 \ {f 2f}$	6.9		1.1
CO_2 $2f$	9.4	11.9	0.9
CO_2 4f			0.9
AVG,%	$\delta^{MC}_{KLRR-T+vdW1f}$	$\delta^{MC}_{HMSA+vdW1f}$	δ^{MC}_{MHMSA}
AVG,% N ₂ 2f	$\delta^{MC}_{KLRR-T+vdW1f}$ 2.2	$\delta^{MC}_{HMSA+vdW1f}$ 2.9	$\delta^{MC}_{MHMSA} \ 1.0$
AVG,% N ₂ 2f O ₂ 2f	$\delta^{MC}_{KLRR-T+vdW1f} \ 2.2 \ 4.7$	$\delta^{MC}_{HMSA+vdW1f}$ 2.9	$\delta^{MC}_{MHMSA} \ 1.0 \ 0.6$
$egin{array}{l} {\sf AVG,\%} \ N_2 \ 2{ m f} \ O_2 \ 2{ m f} \ CO_2 \ 2{ m f} \end{array}$	$\delta^{MC}_{KLRR-T+vdW1f} 2.2 4.7 7.6$	$\delta^{MC}_{HMSA+vdW1f}$ 2.9 6.9	$\delta^{MC}_{MHMSA} onumber 1.0 onumber 0.6 onumber 0.8 onumber 1.0 $

потенциалов моделируемых частиц.

 Предлагаемое в данной работе многокомпонентное уравнение MHMSA превосходит однокомпонентные по точности во всех проведённых исследованиях.

функций Сравнение молекулярных распределения (Рис.2), полученных при помощи предлагаемого уравнения MHMSA И на основе молекулярного Монте-Карло моделирования на наиболее сложной системе CO_2 -О, показывает высокую согласованность результатов.

Глава 4.

В четвёртой главе описывается моделирование изотермических экспериментов трёхкомпонентных В средах CO₂-CH₄-N₂ и NH₃-N₂-H₂ при сравнительно низких давлениях и температурах. Подобное моделирование позволяет подтвердить широкий диапазон применимости предложенного уравнения И провести сравнение на экспериментах известным измеренным С химическим составом системы.

В начале моделировались изотермические эксперименты в смесях CO₂-CH₄-N₂ при температурах 423.15 К, 573.15 К и давлениях 19.94 МПа, 39.94 МПа, 59.93 МПа, 99.93 МПа. Химический состав был известен из

Рис. 2: Функции распределения для СО₂.

экспериментальных данных и варьировался в пределах от 0.1 до 0.8 мольных долей по различным компонентам. Моделирование проводилось при помощи предлагаемого многокомпонентного уравнения MHMSA и методом Монте-Карло. Использовались два набора параметров потенциалов межмолекулярного взаимодействия EXP-6. Первый набор был найден Викторовым С. Б. решением обратной задачи методом KLRR-T+vdW1f с использованием калорических уравнений состояния ИВТАНТЕРМО на изотермических ударно-волновых экспериментах. Второй набор был И Фридом решением обратной найден задачи методом HMSA/MC+vdW1f с использование калорических уравнений состояния JANAF на изотермах и ударных адиабатах.

При анализе результатов моделирования и полученных отклонений давления (Таб.2) были сделаны следующие выводы:

• Результаты предлагаемого уравнения MHMSA и

Таблица 2: Максимальные и средние отклонения давления при моделировании изотерм CO₂-CH₄-N₂.

MAX,%	Victorov		
	$\delta^{Exp}_{MHMSA=3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA=3f}$
423.15K	17.0	17.9	2.5
573.15K	3.6	3.3	0.5
TOTAL	17.0	17.9	2.5
MAX,%	Fried		
	$\delta^{Exp}_{MHMSA=3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA=3f}$
423.15K	18.7	19.0	0.6
573.15K	2.0	2.8	0.5
TOTAL	18.7	19.0	0.6
AVG,%	Victorov		
	$\delta^{Exp}_{MHMSA=3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA=3f}$
423.15K	4.2	4 .0	0.7
573.15K	3.0	2.2	0.2
TOTAL	3.2	3.0	0.4
AVG,%	Fried		
	$\delta^{Exp}_{MHMSA=3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA=3f}$
423.15K	2.6	2.5	0.2
573.15K	1.5	1.6	0.1
TOTAL	2.0	2.1	0.1

молекулярного Монте-Карло моделирования могут существенно отклоняться от экспериментальных данных при низких температурах, больших плотностях и большом содержании СО₂.

- При обнаруженном большом разбросе пиковых значений, средние отклонения не очень велики.
- Отклонение результатов уравнения MHMSA от данных Монте-Карло много меньше отклонения данных Монте-Карло от результатов экспериментов, следовательно:
- Параметры парных потенциалов взаимодействия, найденные с использованием приближения эффективного однокомпонентного флюида vdW1f

могут понижать точность многокомпонентного моделирования.

 Набор потенциальных параметров Фрида обеспечивает наименьшее среднее отклонение результатов молекулярного Монте-Карло моделирования от экспериментальных данных.

Большой интерес представляет моделирование изотермических экспериментов трехкомпонентных смесей NH₃-N₂-H₂ при температурах 423 К, 473 К, 523 К, 573 К и давлениях в диапазоне 7.3 — 156.7 МПа. Химический состав был известен из экспериментальных данных и представлял собой три смеси в мольных долях 0.1742-0.2065-0.6195, 0.3800-0.1550-0.4650, 0.4950-0.1262-0.3788 соответственно. Особый интерес заключался в том, что молекула NH₃ является выражено дипольной eë описании И при сферически-симметричными потенциалами EXP-6 часто используется полиномиальная температурная поправка для глубины потенциальной ямы, обоснованная возбуждением вращательных степеней свободы и осреднением дипольных взаимодействий по направлению. Подобная поправка используется в параметрах парных потенциалов Викторова С. Б. Кроме наборов параметров потенциалов Викторова и Фрида, использовался набор Соузы, найденный решением обратной задачи молекулярным методом Монте-Карло на холодных изотермах.

При анализе полученных данных моделирования изотерм (Рис.3) по максимальным (Таб.3) и средним (Таб.4) отклонениям давлений были сделаны следующие выводы:

- Результаты расчетов С использованием однокомпонентного уравнения HMSA с приближением vdW1f параметрами парных потенциалов И С температурными дипольными поправками, подобранными же приближением vdW1f. С тем показывает наилучшее согласие с экспериментальными данными по сравнению с другими уравнениями и другими наборами потенциалов.
- Отклонение результатов предлагаемого многокомпонентного уравнения MHMSA от результатов

Рис. 3: Изотерма NH₃-N₂-H₂.

молекулярно Монте-Карло моделирования много меньше отклонения результатов Монте-Карло моделирования от экспериментальных данных.

- Температурные дипольные поправки, найденные с использованием приближения vdW1f не оказывают существенного влияния на многокомпонентное уравнение и результаты Монте-Карло моделирования.
- Набор потенциальных параметров Фрида обеспечивает наименьшее отклонение результатов молекулярного Монте-Карло моделирования от экспериментальных данных.

Глава 5.

В пятой главе описывается построение метода экстремума характеристических функций для нахождения точки

термодинамического равновесия химической реагирующей среды. В теоретической части делается заключение о необходимости нахождения значения свободной энергии Гельмгольца для уравнения состояния MHMSA. Предлагаются варианты её нахождения методом Кирквуда или интегрированием Чандури-Госша.

Далее, проводится совместное сравнение термодинамического кода TDS320 на основе уравнения состояния KLRR-Т и самостоятельно разработанного в ходе работы термодинамического кода SCOZA-TS на основе MHMSA методом моделирования ударной адиабаты жидкого азота с учётом диссоциации и рекомбинации (Рис. 4) с равновесными составами и температурами для каждого из них в отдельности. Для корректности сравнения результатов моделирования при помощи SCOZA-TS использовались ИВТАНТЕРМО, калорические полиномы аналогичные применённым в коде TDS320.

Рис. 4: Ударная адиабата N₂.

Максимальное отклонение давления при равновесных температурах и составах в TDS320 и SCOZA-TS составило 8.1%, среднее — 2.8%, что существенно выше аналогичных показателей (1.8% и 1.0% соответственно) при сравнении уравнения состояния KLRR-Т и MHMSA на одинаковых ИЗ TDS320. температурах И составах Согласие С экспериментальными данными удовлетворительное для обоих ТК без явного преимущества одного ИЗ них. Согласие кода SCOZA-TS с экспериментами может быть улучшено подбором параметров парных межмолекулярных потенциалов решением обратных задач моделирования ударных волн и изотерм по аналогии с TDS320.

Максимальное отклонение равновесных температур 18.2%. 5.0%. составило Точность среднее экспериментальных данных по температурам в ударных волнах ограничена возможностями бесконтактной спектрометрии. С учётом погрешностей опубликованных данных, результаты расчетов по обоим ТК согласуются с экспериментом.

Максимальное отклонение равновесных мольных долей молекулярного азота составило 6.6%, среднее — 2.6%.

На основании полученных данных делается вывод о значительном влиянии на точку термодинамического равновесия сравнительно небольших расхождений уравнений состояния. Результаты SCOZA-TS подтверждают данные TDS320 о наличии зон с отрицательным значением коэффициента Грюнайзена.

Для изучения влияния многокомпонентных составов и межмолекулярных парных потенциалов на расхождение между результатами SCOZA-TS и TDS320 было проведено моделирование ударно волновых экспериментов с жидким аммиаком. Аммиак сжимался ударными волнами из состояния при T = 230 K, $\rho = 0.693$ г/см³, E = -17.4 ккал/моль.

Особенностью данной системы является дипольная аммиака. Одним из принятых молекула подходов Κ моделированию полярных молекул является использование глубине температурных поправок потенциальной Κ ямы сферически симметричного потенциала. В данном моделировании использовались как простые потенциалы уточнённые Фрида, так И потенциалы Викторова С температурными дипольными поправками. Кроме того,

в начальной стадии диссоциации в составе продуктов ударной волны преобладают компоненты NH₃, H и N₂, что требует минимум трёхкомпонентного моделирования. Для данных экспериментов имеются опубликованные результаты квантово-молекулярного моделирования.

Моделирование методом МЭХФ для SCOZA-TS (MHMSA) и TDS320 (KLRR-T+vdW1f) проводилось с использованием калориметрических полиномов ИВТАНТЕРМО.

Рис. 5: Ударная адиабата NH₃.

Полученные ударные адиабаты для SCOZA-TS и TDS320 с уточнёнными потенциалами Викторова значительно отклоняются друг от друга. На участке с имеющимися экспериментальными данными результаты расчетов по обоим термодинамическим кодам укладываются в диапазон экспериментальной погрешности. Ударная адиабата, построенная на основе опубликованных данных квантовомолекулярного моделирования, лежит между адиабатами SCOZA-TS и TDS320 (Рис. 5). По мере роста давления расхождение увеличивается до 20%, температуры — до 20%, мольной доли непродиссоциировавшего аммиака — до 45%.

Ударные адиабаты SCOZA-TS и TDS320, полученные с использованием более старых и более простых параметров Фрида согласуются существенно лучше. На $P - \rho$ диаграмме (Рис. 5) хорошо видно, что поправки Викторова улучшают согласие с экспериментальными и первопринципными данными для однокомпонентного TDS320 и ухудшают для более точного трёхкомпонентного SCOZA-TS. Следует отметить, что использование таких поправок существенно влияет на получаемый равновесный химический состав системы.

Полученные результаты показывают, что усложнённые потенциалы с дополнительными поправками, найденными решением обратной задачи для однокомпонентного моделирования с использованием модели эффективного флюида Ван-дер-Ваальса, могут вызывать значительные отклонения в случае полноценного многокомпонентного моделирования. Подтверждается вывод о необходимости верификации опубликованных ранее параметров парных потенциалов взаимодействия молекул и их уточнения с использованием более детальных термодинамических моделей.

Делаются следующие выводы:

- На основе уравнения MHMSA построен термодинамический код SCOZA-TS.
- Моделирование ударных волн в жидком азоте и аммиаке показало удовлетворительное согласие расчетов на основе термодинамических кодов SCOZA-TS и TDS320 с экспериментальными данными.
- Использование поправок потенциалов, найденных решением обратной задачи моделирования с использованием модели эффективного флюида Вандер-Ваальса, приводит к ухудшению результатов для более точных моделей.
- Результаты SCOZA-TS могут быть улучшены подборкой новой единой базы данных параметров парных молекулярных потенциалов для максимально

возможной выборки веществ на основе экспериментальных данных для различных их смесей.

- Показано, что незначительные расхождения в значениях термодинамических параметров, найденных на основе различных уравнений состояния, могут приводить к значительным отклонениям точек термодинамического равновесия.
- Результаты SCOZA-TS подтверждают данные TDS320 о наличии зон с отрицательным значением коэффициента Грюнайзена на ударной адиабате жидкого азота.

Основные выводы.

- Разработано новое многокомпонентное замыкающее уравнение MHMSA и уравнение состояния многокомпонентной смеси в общем виде на его основе.
- Реализован алгоритм решения термодинамических интегральных уравнений.
- Разработана методика анализа погрешностей на молекулярной функции распределения.
- Реализован и оптимизирован параллельный на общей памяти программный код.
- Проведено 2-х и 4-х компонентное моделирование состояний на ударных адиабатах жидких N₂, O₂, CO₂ до давления 90 ГПа.
- Проведено 3-х компонентное моделирование изотермических экспериментов CO₂-CH₄-N₂ при температурах 323.15 — 573.15 К при давлениях 19.94 — 99.93 МПа.
- Проведено 3-х компонентное моделирование изотермических экспериментов NH₃-N₂-H₂ при температурах 323 — 573 К при давлениях 7.3 — 156.7 МПа.

- Показано отрицательное влияние приближения однокомпонентного эффективного флюида Ван-дер-Ваальса на опубликованные в справочной литературе параметры парных потенциалов молекулярного взаимодействия и поправки к ним.
- Показано хорошее согласие результатов расчетов на основе разработанного уравнения MHMSA молекулярного Монте-Карло С результатами моделирования для всех проведённых моделирований во всех заявленных диапазонах со значительным преимуществом над однокомпонентными уравнениями с использованием модели эффективного флюида Вандер-Ваальса.
- Разработанное замыкающее уравнение позволяет получать высококачественные молекулярные функции распределения, пригодные для теоретического анализа широкого круга термодинамических систем.
- Гипотеза применимости модели построения самосогласованных замыканий на основе парциальных выражений для изотермической сжимаемости осреднения разноимённых интерполирующих И для высокотемпературных параметров плазменных систем была применена к газовым и жидкостным системам в широком диапазоне давлений и температур.
- На основе уравнения MHMSA построен термодинамический код SCOZA-TS.
- Моделирование ударной волны в жидком азоте и аммиаке показало удовлетворительное согласие расчетов на основе термодинамических кодов SCOZA-TS и TDS320 с экспериментальными данными.
- Использование поправок потенциалов, найденных решением обратной задачи моделирования с использованием модели эффективного флюида Вандер-Ваальса, приводит к ухудшению результатов для более точных моделей.

- Результаты SCOZA-TS могут быть улучшены подборкой новой единой базы данных параметров парных молекулярных потенциалов для максимально возможной выборки веществ на основе экспериментальных данных для различных их смесей.
- Показано, что незначительные расхождения в значениях термодинамических параметров, найденных на основе различных уравнений состояния, могут приводить к значительным отклонениям точек термодинамического равновесия.

Таблица	3:	Максимальные	отклонения	давления	при
моделиро	ван	ии изотерм NH ₃ -N	$[_{2}-H_{2}.$		

MAX,%	Victorov			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	6.2	12.4	10.4	3.1
473K	5.4	11.0	9.4	2.9
523K	4.6	10.6	9.1	2.9
573K	4.0	10.7	9.3	2.7
17-21-62	2.5	10.3	7.7	2.8
38-16-46	3.8	10.2	7.3	3.1
49-13-38	6.2	12.4	10.4	2.2
TOTAL	6.2	12.4	10.4	3.1
MAX,%	Souza	_	_	
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	9.2	8.2	12.9	0.2
473K	10.0	8.2	13.4	0.1
523K	10.8	8.5	13.8	0.1
573K	11.5	14.3	14.3	0.1
17-21-62	3.9	5.9	6.0	0.2
38-16-46	5.8	8.8	8.9	0.2
49-13-38	11.5	14.3	14.3	0.1
TOTAL	11.5	14.3	14.3	0.2
MAX,%	Fried	Farm	\overline{U} and \overline{U}	140
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ_{MC}^{Exp}	$\delta^{MC}_{MHMSA-3f}$
423K	10.6	8.1	8.0	1.0
473K	7.9	6.6	6.7	0.1
523K	5.9	7.1	7.2	0.2
573K	4.4	8.7	8.8	0.2
17-21-62	4.0	7.1	7.2	0.2
38-16-46	4.3	6.5	6.6	0.1
49-13-38	10.6	8.7	8.8	1.0
TOTAL	10.6	8.7	8.8	1.0

,	Габлица	4:	Средние	отклонения	давления	при
]	моделирова	ании	изотерм NH	\mathbf{H}_3 - \mathbf{N}_2 - \mathbf{H}_2 .		-

AVG,%	Victorov			
	$\delta^{Exp}_{HMSA+adW1f}$	δ^{Exp}_{MHMSA} 3f	δ^{Exp}_{MC}	δ^{MC}_{MHMSA} 3f
423K	2.3	6.2	4.9	1.3
473K	2.1	5.4	4.3	1.2
523K	2.2	6.4	5.0	1.6
573K	1.8	4.8	3.9	1.1
17-21-62	1.3	5.1	3.9	1.3
38-16-46	2.0	5.6	4.3	1.4
49-13-38	2.8	5.3	4.6	0.9
TOTAL	2.0	5.3	4.2	1.2
AVG,%	Souza			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	2.9	3.3	4.9	0.1
473K	3.1	3.5	4.7	0.1
523K	4.0	4.2	5.9	0.1
573K	3.6	4.8	5.1	0.1
17-21-62	1.6	2.7	2.7	0.1
38-16-46	3.0	5.2	5.2	0.1
49-13-38	5.0	3.7	6.7	0.1
TOTAL	3.1	3.8	4.8	0.1
AVG,%	Fried			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	4.0	3.3	3.3	0.1
473K	2.8	3.1	3.2	0.1
523K	2.8	4.6	3.2	0.1
573K	2.1	3.7	3.8	0.1
17-21-62	1.7	3.3	3.4	0.1
38-16-46	2.1	2.8	2.9	0.1
49-13-38	4.6	4.1	3.9	0.1
TOTAL	2.7	3.4	3.4	0.1

Глава 1

Широкодиапазонные уравнения состояния сложных химических систем

1.1. Газовые и жидкостные системы

Современная наука и техника сталкиваются с широким классом задач, требующих моделирования сложных химических систем с возможностью протекания химических реакций при высоких давлениях И температурах. Подобные проектировании задачи встречаются при геофизике, энергетических установок, астрофизике, физике ударных и детонационных волн [28]. Многие из этих задач требуют непрерывного моделирования на большом диапазоне термодинамических параметров, включающих в себя границы фазовых переходов изучаемых веществ. Для моделирования подобных систем требуются широкодиапазонные уравнения состояния, опирающиеся на общие физические модели, применимые для всех встречающихся в системе фазовых состояний. Кроме того, многие задачи требуют высокой точности результатов, что в сочетании с использованием только общих для всех веществ и состояний физических моделей приводит к усложнению используемых уравнений состояния [29].

Вышеописанная задача может быть решена методами

молекулярного атомистического моделирования, молекулярные методы Монтевключаюшими в себя Карло и методы молекулярной динамики [30]. Данные методы используют наиболее общие законы статистической физики и термодинамики, применимые для широкого диапазона химических систем, находящихся в различных агрегатных состояниях. Точность этих методов ограничена лишь применимостью термодинамических приближений и приближений статистической физики, реалистичностью потенциалов межмолекулярного взаимодействия И временем накопления статистических данных на имеющихся вычислительных pecypcax. Моделирование химических составов реагирующих И нахождение химического равновесия может быть реализовано при помоши химически-реагирующих ансамблей RxMC [31] в рамках методов МК и использованием реагирующих потенциалов, подобных ReaxFF [32], в молекулярной динамике. Однако, атомистические расчёты с химическим реагированием требуют больших вычислительных ресурсов.

Значительные моделировании трудности в подобных широкое разнообразие задач вызывает протекания внешних условий макропараметрических рассматриваемых процессов. Пля технических задач требуется термодинамический способный. код, как минимум, решать 6-ть ОСНОВНЫХ статических И 2-е стационарные динамические задачи термодинамики: TV, TP, UV, HP, SV, SP, ударной волны и детонации [28] [33] [34]. Отдельного обсуждения заслуживают задачи с заданными внешними микропараметрическими условиями.

Трудности заключаются в отсутствии соответствующих аппаратов статистических ансамблей и соответствующих приложений молекулярного метода Монте-Карло для всех 8-ми поставленных выше задач. Возможности шаговых операций метода молекулярной динамики по выполнению внешних условий задачи ещё меньше. Указанные выше задачи могут быть сведены к решению уравнения состояния в классическом виде зависимости

$$f(P, V, T) = 0$$
(1.1)

за счёт использования итеративных процедур, например,

метода экстремума характеристических функций. Однако, высокая вложенность соответствующих итераций делает ресурсоёмкие методы атомистического моделирования практически неприменимыми в качестве соответствующего уравнения состояния.

Для значительного сокращения ресурсоёмкости вычислений требуется использовать теоретические приближения, обладающие широким диапазоном применимости как по типам термодинамических систем так и по диапазонам термодинамических параметров. Широкое применение нашли теории на основе анализа корреляционных функций и функции распределения. Среди них можно выделить термодинамическую вариационную теорию возмущений и теорию теорию, интегральных уравнений.

Значительные успехи были достигнуты при работе однокомпонентной версией теории С возмущений [35]. даёт Данная теория высокоточное уравнение обладающее хорошей состояния, СХОДИМОСТЬЮ, низкой ресурсоёмкостью вычислений И позволяет получать аналитические выражения для вторых производных свободной энергии Гельмгольца. Последнее качество оказывается чрезвычайно удобным при построении метода характеристических функций, экстремума позволяя сократить время вычисления на порядки и улучшить сходимость уравнений этого метода. Однокомпонентная версия теории возмущений была с успехом применена многокомпонентных для моделирования химически за счёт использования реагирующих систем модели эффективного однокомпонентного флюида Ван-дер-Ваальса, которая, однако, имеет ограничения по применимости [8] [15]. Было получено аналитическое решение для функций распределения двухкомпонентного твердосферного флюида, позволяющее расширить теорию возмущений на двухкомпонентные составы. Значительный интерес представляет моделирование многокомпонентных составов с использованием двухкомпонентного приближения [22].

Термодинамическая теория интегральных уравнений так же позволяет получить высокую точность уравнения состояния, однако, она имеет ограничения по сходимости собственных уравнений, более ресурсоёмка и не позволяет получить аналитических выражений для вторых производных свободной энергии Гельмгольца [36]. Таким образом, применение данной теории для метода экстремума характеристических функций представляет определённую трудность, но в литературе можно найти примеры построения термодинамических кодов без использования вторых производных [37]. Ключевым преимуществом теории интегральных уравнений является возможность построения версии для смеси из произвольного числа химических компонент. Кроме того, полученные с её помощью функции распределения лучше согласуются с результатами атомистического моделирования [13].

Применение термодинамической теории интегральных уравнений к многокомпонентным термодинамическим системам в широком диапазоне термодинамических параметров является основным предметом данной работы.

1.2. Типы замыкающих уравнений

Теория интегральных уравнений для описания взаимного расположения частиц оперирует понятиями функции распределения и корреляционных функций. В случае сферически симметричных молекул в пространственнооднородных системах они могут быть представлены в виде:

- $g_{ij}(r)$ радиальная функция распределения, определяющая вероятность обнаружения молекулы компонента *i* на расстоянии от *r* до *r* + *dr* от молекулы компонента *j*;
- с_{ij}(r) парная корреляционная функция, отражающая корреляции координат пары молекул без учёта корреляций остальных молекул в системе;
- *h_{ij}(r)* полная корреляционная функция, учитывающая все парные взаимодействия.

Исходя из определения, полная корреляционная функция может быть найдена как:

$$g_{ij}(r) \stackrel{\text{def}}{=} h_{ij}(r) + 1 \tag{1.2}$$
Аналогично, из определения парной корреляционной функции следует уравнение Орнштейна-Цернике:

$$h_{ij}(r) \stackrel{\text{def}}{=} c_{ij}(r) + \sum_{k=1}^{m} \rho_k \int c_{ik}(\vec{s}) h_{kj}(|\vec{r} - \vec{s}|) d\vec{s}$$
(1.3)

где m — количество компонент, ρ_k — численная плотность компонента k.

В данной работе используется уравнение Орнштейна-Цернике в виде разложения до второго порядка точности, отражающего возможность взаимодействия молекул как непосредственно, так и через произвольную третью частицу. Возможностью воздействия цепочки четырёх и более частиц в данной работе пренебрегается, однако в литературе [38] можно найти выкладки для более высоких порядков разложения, требующиеся для более сложных систем и анализ применимости подобного приближения.

Для замыкания системы уравнений (1.2, 1.3) требуется третье уравнение, называемое замыкающим. Оно может быть получено из системы уравнений ББГКИ в виде [39]:

$$g_{ij}(r) = \exp[-\beta\phi_{ij}(r) + \gamma_{ij}(r) + B_{ij}(r)]$$
(1.4)

где $\beta = \frac{1}{k_BT}$ — обратная температура, k_B — константа Больцмана, T — температура, ϕ_{ij} — парный потенциал молекулярного взаимодействия, $\gamma_{ij}(r) = h_{ij}(r) - c_{ij}(r)$ — замена переменных, $B_{ij}(r)$ — бридж-функционал, представляющий собой бесконечные ряды неприводимых диаграмм.

Для практических вычислений бридж-функционал заменяется на аналитические приближения, имеющие локальную применимость:

 HNC — гиперсетевое-цепное приближение [39] [40] [41] [42] [43]. Одно из наиболее простых и часто используемых приближений, работающее на больших расстояниях между взаимодействующими молекулами.

$$B_{ij}(r) = 0 \tag{1.5}$$

$$g_{ij}(r) = \exp[-\beta\phi_{ij}(r) + \gamma_{ij}(r)]$$
(1.6)

 РҮ — приближение Перкуса-Йевика
 [39] [40] [41] [44] [45] [46] [43]. Короткодействующее приближение, полученное суммированием определённого вида диаграмм при игнорировании других видов в бридж-функционале.

$$B_{ij}(r) = \ln(1 + \gamma_{ij}(r)) - \gamma_{ij}(r)$$

$$(1.7)$$

$$g_{ij}(r) = \exp(-\beta \phi_{ij}(r))[1 + \gamma_{ij}(r)]$$
 (1.8)

• MSA — среднесферическое приближение [39] [47] [48] [49] [50] [51] [52] [41] [53] [54] [42]. Это приближение получено с использованием аналитической асимптоты

$$c_{ij}(r) \underset{r \to \infty}{\longrightarrow} -\beta \phi_{ij}(r)$$
 (1.9)

и предположением о наличии твёрдого ядра частицы радиуса *σ*:

$$c_{ij}(r) = -\beta \phi_{ij}(r), r \ge \sigma; \tag{1.10}$$

$$h_{ij}(r) = -1, r < \sigma;$$
 (1.11)

 SMSA — среднесферическое приближение для мягких ядер [39] [55]. Является расширением над приближением MSA, построенным с помощью разбиения потенциала взаимодействия на отталкивающую и возмущающую притягивающую части:

$$\phi_{ij}^{R} = \begin{cases} \phi_{ij}(r) - \phi_{ij}(r_{ij}^{min}) & : r \le r_{ij}^{min} \\ 0 & : r > r_{ij}^{min} \end{cases}$$
(1.12)

$$\phi_{ij}^{A} = \begin{cases} \phi_{ij}(r_{ij}^{min}) & :r \le r_{ij}^{min} \\ \phi_{ij}(r) & :r > r_{ij}^{min} \end{cases}$$
(1.13)

где r_{ij}^{min} — радиус минимума потенциала. После замены переменных:

$$\mathcal{T}_{ij} = \gamma_{ij}(r) - \beta \phi^A_{ij}(r) \tag{1.14}$$

замыкающее уравнение SMSA можно представить в виде:

$$B_{ij}(r) = \ln(1 + \mathcal{T}_{ij}) - \mathcal{T}_{ij}$$
(1.15)

$$g_{ij}(r) = \exp(-\beta \phi_{ij}^R) [1 + \mathcal{T}_{ij}]$$
 (1.16)

• MS — замыкание Мартынова-Саркисова [39][56][40][41][44]. Данное замыкание было получено в результате анализа вклада различных диаграмм в конечное значение бридж-функционала и изучения их свойств вблизи критической точки.

$$B_{ij}(r) = (1 + 2\gamma_{ij}(r))^{\frac{1}{2}} - \gamma_{ij}(r) - 1$$
(1.17)

.

$$g_{ij}(r) = \exp[-\beta \phi_{ij}(r) + (1 + 2\gamma_{ij}(r))]^{\frac{1}{2}} - 1]$$
(1.18)

Отличительной особенностью данного локального замыкания является наличие внутреннего критерия существования жидкой фазы.

• MS2 — ещё одно замыкание от Мартынова и Саркисова [39] [56].

$$B_{ij}(r) = [1 + 2(\gamma_{ij}(r) - \rho\beta\phi_{ij}^A(r)]^{\frac{1}{2}} + \rho\beta\phi_{ij}^A(r) - \gamma_{ij}(r) - 1 \quad (1.19)$$

$$g_{ij} = \exp(-\beta\phi_{ij}(r) + [1 + 2(\gamma_{ij} - \rho\beta\phi_{ij}^A(r))]^{\frac{1}{2}} + \rho\beta\phi_{ij}^A(r) - 1)$$
 (1.20)

 DHH — замыкание Дюха-Хэймета-Хэндерсона [39] [57]. Данное замыкание было получено численным подбором коэффициентов для Леннард-Джонсовой системы.

$$B_{ij} = -\mathcal{T}^2 \frac{1}{2} \left[1 + \left(\frac{5\mathcal{T} + 11}{7\mathcal{T} + 9} \right) \mathcal{T} \right]^{-1}$$
(1.21)

Это уравнение позволяет описать линию испаренияконденсации

Описанные выше замыкающие уравнения представляют фундаментальную ценность для качественного анализа отдельных фазовых состояний или фазовых переходов. Однако, их диапазон применимости не позволяет решить поставленные в данной работе задачи.

Для построения широкодиапазонных уравнений состояния используются самосогласованные замыкающие уравнения, которые содержат в себе подгоночные параметры. Эти параметры находятся в каждой конкретной точке фазового пространства, исходя из условия выполнения термодинамических соотношений.

Примерами таких соотношений может служить выражение для изотермической сжимаемости и соотношения Максвелла:

$$\frac{1}{\beta} \left(\frac{\partial \rho}{\partial P} \right)_T = 1 + 4\pi \rho \int_0^{+\infty} h(r) r^2 dr$$
(1.22)

$$\left(\frac{\partial E}{\partial V}\right)_T = T^2 \frac{\partial}{\partial T} \left(\frac{P}{T}\right)_V$$
(1.23)

где *P* — давление, *E* — внутренняя энергия, *V* — объем.

Давление для этих выражений может быть найдено через вириальное уравнение:

$$P = \frac{\rho}{\beta} - \frac{2}{3}\pi \sum_{i=1}^{m} \sum_{j=1}^{m} \rho_i \rho_j \int_0^{+\infty} g_{ij}(r) \frac{\partial \phi_{ij}(r)}{\partial r} r^3 dr$$
(1.24)

А избыточная внутренняя энергия из соотношения:

$$E^{ex} = 2\pi\beta \sum_{i=1}^{m} \sum_{j=1}^{m} \rho_i \rho_j \int_0^{+\infty} \phi_{ij}(r) g_{ij}(r) r^2 dr$$
(1.25)

Широкое распространение нашли следующие самосогласованные замыкающие уравнения:

• RY — приближение Роджерса-Ионга [39] [58], представляющее собой интерполяцию между локальными приближениями РУ и HNC:

$$B_{ij}(r) = \ln\left[1 + \frac{\exp[f_{ij}(r)\gamma_{ij}(r) - 1]}{f_{ij}(r)}\right] - \gamma_{ij}(r)$$
(1.26)

$$g_{ij}(r) = \exp -\beta \phi_{ij}(r) \left[1 + \frac{\exp[f_{ij}(r)\gamma_{ij}(r)] - 1}{f_{ij}(r)} \right]$$
(1.27)

где $f_{ij}(r)$ — произвольная интерполирующая функция с асимптотами:

$$\lim_{r \to 0} f_{ij}(r) = 0$$
 (1.28)

$$\lim_{r \to \infty} f_{ij}(r) = 1 \tag{1.29}$$

Часто используется экспоненциальная интерполяция:

$$f_{ij}(r) = 1 - \exp(-\lambda_{ij}r)$$
 (1.30)

где λ_{ij} — интерполирующий коэффициент, подлежащий определению непосредственно в точке фазового пространства, в которой рассчитывается уравнение состояния.

• HMSA — приближение Зера-Хансена [39] [59] [60] [57] [61]. Представляет собой интерполяцию между HNC и SMSA с соответствующим SMSA разбиением потенциала (1.12)(1.13):

$$B_{ij}(r) = -\mathcal{T}_{ij}(r) + \ln\left[1 + \frac{\exp[f_{ij}(r)\mathcal{T}_{ij}(r)] - 1}{f_{ij}(r)}\right]$$
(1.31)

$$g_{ij}(r) = \exp(-\beta \phi_{ij}^R) \left[1 + \frac{\exp[f_{ij}(r)\mathcal{T}_{ij}(r)] - 1}{f_{ij}(r)} \right]$$
(1.32)

 RHNC (MHNC) — референсное замыкающее уравнение [39] [62]. Использует формулировку теории интегральных уравнений с подстановкой бриджфункционала от референсной системы твёрдых сфер. Эффективный радиус твёрдых сфер находится из условия термодинамической согласованности:

$$B(r) = B_{hs}(r,\lambda) \tag{1.33}$$

 V (MV) — замыкание Верле, популярное для моделирования твёрдых сфер, коллоидов и адсорбции [39] [41] [63] [44]. Было модернизировано Лабиком и Хендерсеном путём формулировки зависимости λ_{ij} от моделируемого состояния твёрдых сфер:

$$B_{ij}(r) = \frac{1}{2} \frac{\gamma_{ij}^2(r)}{1 + \lambda_{ij}\gamma_{ij}(r)}$$
(1.34)

$$g_{ij}(r) = \exp\left[-\beta\phi_{ij}(r) + \gamma_{ij}(r) + \frac{1}{2}\frac{\gamma_{ij}^2(r)}{1 + \lambda_{ij}\gamma_{ij}(r)}\right]$$
(1.35)

• BPGG (MS-HNC) — замыкание Баллоне-Пастора-Гали-Газилло [39] [44]. Это замыкание для частиц с твёрдым ядром, имеющее схожую с VM применимость.

$$B_{ij}(r) = \left[1 + \lambda_{ij}\gamma_{ij}(r)\right]^{\frac{1}{\lambda_{ij}}} - \gamma_{ij}(r) - 1$$
 (1.36)

$$g_{ij}(r) = \exp\left(-\beta\phi_{ij}(r) + [1 + \lambda_{ij}\gamma_{ij}(r)]^{\frac{1}{\lambda_{ij}}} - 1\right)$$
(1.37)

• VM — замыкание Вомпе-Вартынова [39] [64] [65].

$$B_{ij}(r) = -\lambda_{ij} (B_{ij}(r) - \mathcal{T}_{ij}(r))^{\frac{1}{2}}$$
(1.38)

$$g_{ij}(r) = \exp\left(-\beta \phi_{ij}^R(r) - \frac{1 - [1 + 2\mathcal{T}_{ij}(r)]^{\frac{1}{2}}}{2\lambda_{ij}}\right)$$
(1.39)

- ZSEP замыкание в терминологии нульразделительной теоремы для твёрдых сфер с большим числом внутренних условий согласованности [39] [66] [67] [68] [69] [70] [71].
- BB (MV-HNC) замыкание Бомона-Бретона [72].

$$B_{ij}(r) = \left[1 + 2\mathcal{T}_{ij}(r) + f_{ij}(r)\mathcal{T}_{ij}^2(r)\right]^{\frac{1}{2}} - 1 - \mathcal{T}_{ij}(r)$$
(1.40)

$$g_{ij}(r) = \exp\left(-\beta \phi_{ij}^{R} + \left[1 + 2\mathcal{T}_{ij}(r) + f_{ij}(r)\mathcal{T}_{ij}^{2}(r)\right]^{\frac{1}{2}}\right)$$
(1.41)

При моделировании состояний с высокой плотностью, таких, как фронт детонационной волны, требуется отталкивания реалистичная модель молекул. В [29] было показано, что отталкивание носит литературе экспоненциальный характер в подобных взаимодействиях. Кроме того, для непрерывного моделирования процесса разрежения требуется и реалистичная ветвь притяжения.

Одной и таких моделей является молекулярный потенциал парного взаимодействия EXP-6:

$$\phi_{ij}(r) = \begin{cases} +\infty & :r \leq r_{ij}^{max} \\ \frac{\epsilon_{ij}}{\alpha_{ij}-6} \left(6 \exp\left[\alpha_{ij} \left(1 - \frac{r}{r_{ij}^{min}}\right)\right] - \alpha_{ij} \left(\frac{r_{ij}^{min}}{r}\right)^6 \right) & :r > r_{ij}^{max} \\ \phi(r_{ij}^{max}) = \max_r \phi(r) & (1.42) \\ (1.43) \end{cases}$$

где r_{ij}^{max} — радиус максимума потенциала, ниже которого лежит отрезаемый нефизический участок кривой.

Среди рассмотренных замыкающих уравнений с потенциалами ЕХР-6 в широком диапазоне термодинамических параметров лучше всего согласуется замыкание HMSA, которое было выбрано [73] и применяется в настоящей работе для многокомпонентных смесей.

1.3. Смеси

Одной трудностей ИЗ главных В использовании самосогласованных замыканий для моделирования реальных процессов является то, что они изначально формулировались для однокомпонентных систем. Доработка самих выражений аналогична локальным замыканиям и в большинстве случаев сводится к расстановке тензорных индексов. Суть же проблемы заключается в увеличении числа неизвестных подгоночных параметров, для нахождения которых уравнений (1.22)(1.23) уже недостаточно.

Для преодоления этой проблемы можно использовать однокомпонентную модель эффективного флюида Ван-дер-Ваальса [74] [75]:

$$r^{min} = \left(\sum_{i=1}^{m} \sum_{j=1}^{m} \chi_i \chi_j (r_{ij}^{min})^3\right)^{\frac{1}{3}}$$
(1.44)

$$\epsilon = \sum_{i=1}^{m} \sum_{j=1}^{m} \chi_i \chi_j \epsilon_{ij} (r_{ij}^{min})^3 / (r^{min})^3$$
(1.45)

$$\alpha = \sum_{i=1}^{m} \sum_{j=1}^{m} \chi_i \chi_j \alpha_{ij} \epsilon_{ij} (r_{ij}^{min})^3 / \epsilon (r^{min})^3$$
(1.46)

где χ_i — мольная доля *i*-го вещества.

Однако, как было отмечено выше, применимость этой модели ограничена. Аналогично, недостаточен диапазон применимости у модели Оулд-Каддура-Пастора [76], основанной на приравнивании интерполирующих параметров:

$$\lambda_{ij} = \lambda \tag{1.47}$$

В данной работе предлагается MHMSA модернизированный вариант замыкающего уравнения HMSA. Он основан на алгоритме поиска интерполяционных параметров узкоспециализированного для самосогласованного замыкающего уравнения PHNC [77], предложенного Ри для горячей плазмы. Этот алгоритм основан на уравнениях для парциальных сжимаемостей [78] и осреднении разноимённых интерполирующих параметров:

$$\left(\frac{\partial(\beta P)}{\partial\rho_i}\right)_T \equiv 1 - 2\pi \sum_{j=1}^m \rho_j \int_0^{+\infty} c_{ij}(r) r^2 dr$$
(1.48)

$$\min_{\vec{\lambda_{ii}}} \left[\left(\frac{\partial(\beta P)}{\partial \rho_i} \right)_T - \left(\frac{\partial(\beta P)}{\partial \rho_i} \right)_T^{vir} \right]$$
(1.49)

а разноимённые параметры находились осреднением одноимённых:

$$\lambda_{ij} = \frac{\lambda_{ii} + \lambda_{jj}}{2} \tag{1.50}$$

В ходе работы было получено уточнённое соотношение для осреднения интерполяционных параметров:

$$\lambda_{ij} = \frac{\lambda_{ii}r_{ii} + \lambda_{jj}r_{jj}}{2r_{ij}}$$
(1.51)

Ещё одним вопросом, характерным для моделирования многокомпонентных молекулярных систем является перекрёстных нахождение параметров потенциалов взаимодействия. Существует большой объём справочных данных по одноимённым параметрам потенциалов, значительная часть которого была получена ИЗ Разноимённые однокомпонентных экспериментов. параметры могут быть получены последовательным

подбором на многокомпонентных экспериментах или первопринципными квантово-химическими вычислениями. Однако, объём этих данных недостаточен.

Часто используется модель Лоренца-Берфелота, основанная на осреднении одноимённых параметров [79]:

$$r_{ij}^{min} = \frac{r_{ii}^{min} + r_{jj}^{min}}{2}$$
(1.52)

$$\epsilon_{ij} = \sqrt{\epsilon_{ii}\epsilon_{jj}} \tag{1.53}$$

$$\alpha_{ij} = \sqrt{\alpha_{ii}\alpha_{jj}} \tag{1.54}$$

Часть авторов использует иное выражение для осреднения жёсткостей потенциалов [80]:

$$\alpha_{ij} = \frac{\alpha_{ii} + \alpha_{jj}}{2} \tag{1.55}$$

Существуют и другие правила комбинации [81].

применимости Область подобного приближения ограничена, однако, она значительно превышает однокомпонентного область применимости модели эффективного флюида Ван-дер-Ваальса. B частности, Лоренца-Берфелота активно правила используются в атомистическом моделировании. Кроме того, проблема параметров нахождения разноимённых решением обратной задачи от моделирования многокомпонентных является преодолимой экспериментов И значительно упростится с реализацией достаточно быстрого и точного термодинамического кода, не использующего приближение эффективного флюида.

1.4. Выводы

- Теории на основе молекулярных функций распределения представляют значительный научный и технический интерес для термодинамических расчетов в широком диапазоне давлений и температур.
- Приближение однокомпонентного эффективного флюида Ван-дер-Ваалься имеет ограниченную область применимости, зависящую от параметров парных потенциалов взаимодействия компонентов.

- Термодинамическая теория интегральных уравнений может быть распространена на смеси с произвольным числом компонентов.
- Для широкодиапазонного уравнения состояния требуется самосогласованное замыкающее уравнение.
- Среди известных самосогласованных замыкающих уравнений мало уравнений для многокомпонентных смесей.
- Для однокомпонентного замыкающего уравнения HMSA в сочетании с парным потенциалом взаимодействия EXP-6 разработаны компьютерные коды для расчётов детонации и ударных волн.
- На основе уравнения HMSA и уравнения PHNC предложено расширение MHMSA для произвольного числа компонентов.

Глава 2

Термодинамическая теория интегральных уравнений

2.1. Численное решение уравнения ОЦ

Система уравнений (1.2,1.3,1.32) является тензорной интегральной операторной системой. Она может быть решена в сеточном виде на сферически симметричной расчётной сетке:

$$\Delta r = \frac{r^{cut-off}}{n} \tag{2.1}$$

$$\forall \zeta \in [1..n] : {}_{\zeta}r = \zeta \Delta r \tag{2.2}$$

где $r^{cut-off}$ — радиус обрезания потенциала, n — число точек сетки. На практике, достаточная точность решения для жидких и газовых молекулярных систем может быть получена на сетках:

$$r^{cut-off} \ge 20 \max_{ij} \left(r_{ij}^{min} \right) \tag{2.3}$$

$$n \ge 2^{10} \tag{2.4}$$

Проведём замену переменных:

$$C_{ij} = rc_{ij}(r) \tag{2.5}$$

$$\Gamma_{ij} = r\gamma_{ij}(r) \tag{2.6}$$

После неё уравнение HMSA (1.32) принимает форму:

$$C_{ij} = \begin{cases} -r - \Gamma_{ij}(r) & :r \leq r_{ij}^{max} \\ -r - \Gamma_{ij}(r) + re^{-\beta \phi_{ij}^{R}(r)} \left(\frac{e^{-f_{ij}(r)} \left[\frac{\Gamma_{ij}(r)}{r} - \beta \phi_{ij}^{A}(r) \right]_{-1}}{f_{ij}(r)} + 1 \right) & :r > r_{ij}^{max} \end{cases}$$

$$(2.7)$$

Уравнение Орнштейна-Цернике, соответственно, может быть записано в виде:

$$\Gamma_{ij}(r)r = \sum_{k=1}^{m} \rho_k \left(\Gamma_{ik}(r) + C_{ik}(r) \right) * C_{kj}(r)$$
(2.8)

Далее, можно избавиться от интеграла-свёртки (2.8) при помощи преобразования Фурье:

$$\widehat{\Gamma}_{ij}(\omega)\omega = \sum_{k=1}^{m} \rho_k \widehat{\Gamma}_{ik}(\omega) \widehat{C}_{kj}(\omega) + \sum_{k=1}^{m} \rho_k \widehat{C}_{ik}(\omega) \widehat{C}_{kj}(\omega)$$
(2.9)

заданного на сетке:

$$\Delta \omega = \frac{\pi}{n\Delta r} \tag{2.10}$$

$$\forall \xi \in [1..n] :_{\xi} \omega = \xi \Delta r \tag{2.11}$$

$$\xi \widehat{\Gamma}_{ij} = 4\pi \Delta r \sum_{\zeta=1}^{n-1} \zeta \Gamma_{ij} \sin\left(\frac{\pi}{n}\zeta\xi\right)$$
(2.12)

$$_{\zeta}\Gamma_{ij} = \frac{\Delta\omega}{2\pi^2} \sum_{\xi=1}^{n-1} {}_{\xi}\widehat{\Gamma}_{ij} \sin\left(\frac{\pi}{n}\zeta\xi\right)$$
(2.13)

Функция \hat{T}_{ij} может быть получена из (2.9) в виде:

$$\forall (i,j < m) : \sum_{k=1}^{m} \widehat{\Gamma}_{ik}(\omega) \left(\delta_{jk}\omega - \rho_k \widehat{C}_{kj}(\omega) \right) = \sum_{k=1}^{m} \rho_k \widehat{C}_{ik}(\omega) \widehat{C}_{kj}(\omega) \quad (2.14)$$

Решение системы алгебраических уравнений (2.7) и тензорного уравнения (2.14) может быть найдено методом простой итерации для плотностей меньших плотности системы в критической точке:

$$HMSA: {}^{s-1}C_{ij} = \mathbf{f}({}^{s-1}\widehat{\Gamma}_{ij})$$
(2.15)

$$OZ: {}^{s}\widehat{\Gamma}_{ij} = \mathbf{f}({}^{s-1}\widehat{C}_{pq})$$
(2.16)

Где верхний индекс *s* означает номер итерации.

Улучшить сходимость решения уравнения можно применив метод Ньютона, основанный на разложении алгебраических замыкающих уравнений (2.7) в виде:

$$HMSA: {}^{s-1}C_{ij} = f({}^{s-1}\Gamma_{ij})$$
 (2.17)

в ряд Тейлора до первого порядка относительно ^{*s*-1} Г_{*ij*}:

$${}^{s}C_{ij} = {}^{s-1}C_{ij} + \left(\frac{\partial f}{\partial \Gamma_{ij}}\right)_{\Gamma_{ij} = {}^{s-1}\Gamma_{ij}} \left({}^{s}\Gamma_{ij} - {}^{s-1}\Gamma_{ij}\right)$$
(2.18)

Проведём Фурье-преобразование этого разложения:

$${}^{s}_{\xi}\widehat{C}_{ij} = {}^{s-1}_{\xi}\widehat{C}_{ij} + 4\pi\Delta r \sum_{\zeta=1}^{n-1} \sin\left(\frac{\pi}{n}\zeta\xi\right) \left(\frac{\partial f}{\partial\Gamma_{ij}}\right)_{\zeta\Gamma_{ij} = {}^{s-1}_{\zeta}\Gamma_{ij}} \left({}^{s}_{\zeta}\Gamma_{ij} - {}^{s-1}_{\zeta}\Gamma_{ij}\right)$$
(2.19)

И подставим в него обратное Фурье-преобразование (2.13) для $\widehat{\Gamma}_{ij}$:

$${}_{\xi}^{s}\widehat{C}_{ij} = {}_{\xi}^{s-1}\widehat{C}_{ij} + 4\pi\Delta r \sum_{\psi=1}^{n-1} {}_{\xi\psi}^{s-1}\widehat{C}_{ij} \left({}_{\psi}^{s}\widehat{\Gamma}_{ij} - {}_{\psi}^{s-1}\widehat{\Gamma}_{ij}\right)$$
(2.20)

где:

$$_{\xi\psi}^{s-1}\widehat{C}_{ij} = \frac{2}{n}\sum_{\zeta=1}^{n-1}\sin\left(\frac{\pi}{n}\xi\zeta\right)\sin\left(\frac{\pi}{n}\zeta\psi\right)\left(\frac{\partial f}{\partial\Gamma_{ij}}\right)_{\psi\Gamma_{ij}=_{\psi}^{s-1}\Gamma_{ij}}$$
(2.21)

Полученное выражение (2.20) и представляет собой производную, необходимую для построения метода Ньютона.

Кроме того, может быть применён алгоритм Лабика-Малиевского [43] [82] [74], представляющий собой оптимизацию шага метода Ньютона методом Рафсона для первых l самых длинных гармоник. На практике используются значения $l \approx \frac{1}{2} \frac{\langle r_{ij}^{min} \rangle}{\Delta r}$, как представляющие разумный компромисс между устойчивостью и сходимостью системы. Для построения оптимизации Рафсона выражение (2.20) подставляется в якобиан уравнения Орнштейна-Цернике (2.14) для получения замкнутой системы относительно $\hat{\Gamma}_{ij}$ [83].

По найденным корреляционным функциям вычисляются молекулярные радиальные функции распределения, которые, в свою очередь, используются нахождения термодинамических макропараметров для (1.48)(1.24)(1.25)интегрированием. численным При обрезания, радиусах, больших радиуса функции распределения приравниваются единице, что соответствует отсутствию дальнодействующих корреляций:

$$q_{ij} = 1: r > r^{cut-off} \tag{2.22}$$

На этом участке решения интегралы в выражениях (1.48)(1.24)(1.25) берутся аналитически.

Следует отметить, что погрешности сеточных функций на различных участках распределения вносят различный вклад в погрешность термодинамических макропараметров. Например, проблемным является плато (Рис.2.1) на участке с малыми радиусами, где значения функции распределения малы и удельные погрешности численного решения могут возрастать до неприемлемых значений. Для преодоления этой проблемы использованы весовые коэффициенты на различных участках кривой для определения условия Например, завершения расчёта. можно использовать безразмерную следующую метрику множителей ИЗ интегралов, берущихся численно:

$$weight(r) = \max\left(2\pi\beta\rho\phi(r)r^2, \frac{2}{3}\pi\beta\rho\frac{\partial\phi(r)}{\partial r}r^3, 4\pi\rho(r)r^2\right)$$
(2.23)

В данной работе был реализован алгоритм улучшения сходимости на ранних итерациях, в котором приравниваются нулю значения функций распределения, меньшие средней погрешности, определённой по невязке соответствующих сеточных корреляционных функций.

Рис. 2.1: Погрешности на функции распределения.

2.2. Реализация самосогласованного приложения

Для реализации самосогласованного термодинамического приложения, способного выполнять функции уравнения состояния, необходим алгоритм поиска интерполяционных параметров λ_{ij} . В данной работе предлагается использовать линейное осреднение (1.50)разноимённых для интерполяционных параметров, а одноимённые находить (1.48)Ньютона на основе выражений методом для парциальных изотермических сжимаемостей и вириального уравнений (1.24). При этом применяются логарифмическая и мультипликативная поправки для повышения устойчивости решения.

Для этого решается система уравнений:

$${}^{s}\lambda_{ii} = {}^{s-1}\lambda_{ii} \exp\left({}^{s-1}\eta_{i}{}^{s-1}\theta_{i}\right)$$
(2.24)

$${}^{s-1}\theta_i = -\iota_i ({}^{s-1}\lambda_{ii}) \frac{2\Delta\lambda}{\iota_i ({}^{s-1}\lambda_{ii} + \Delta\lambda) - \iota_i ({}^{s-1}\lambda_{ii} - \Delta\lambda)}$$
(2.25)

$$\iota_i(x) = \left(\frac{\partial P}{\partial \rho}\right)_{T,\lambda_{ii}=x} - \frac{P_{\lambda_{ii}=x}^{vir}(\rho_i + \Delta \rho) - P_{\lambda_{ii}=x}^{vir}(\rho_i - \Delta \rho)}{2\Delta \rho}$$
(2.26)

$$^{-1}\eta_i = \min(|\kappa/^{s-1}\theta_i|, 1)$$
 (2.27)

где $\Delta\lambda, \Delta\rho, \kappa$ — задаваемые пользователем константы, влияющие на сходимость и устойчивость решения.

s

Данная система демонстрирует разностное дифференцирование первого порядка точности. В алгоритме применяются два варианта с первым и третьим порядками точности.

Все перечисленные выше алгоритмы были реализованы использованием стандарта GNU99 на языке С С высокопроизводительных векторизованных библиотек FFTW3, CBLAS. По результатам профилирования было что узким горлышком алгоритма является выявлено, высокопроизводительная библиотечная реализация быстрого Фурье-преобразования. На основании этого был задействован усложнённый алгоритм обучения времени запуска в библиотеке FFTW3 [84] [85] [86] [87] [88] [89] [90]. Несмотря на эти меры, повторное профилирование показало аналогичный результат. Благодаря тому, что узкое горлышко располагается в низкоуровневом участке алгоритма, разработанное приложение было успешно параллелизовано на общей памяти с использованием стандарта OpenMP. Для параллелизации был выбран алгоритм расчёта производных для определения интерполирующих параметров.

2.3. Проверка решения на референсных атомистических расчётах

С целью проверки реализованного алгоритма было проведено сравнение с референсным атомистическим Монте-Карло моделированием, результаты которого были опубликованы в классической работе Говарда и Фрида [91]. Численные эксперименты Говарда и Фрида представляют собой моделирование системы из частиц с потенциалом EXP-6 (1.42), жесткость отталкивания α которого варьировалась в диапазоне от 11.5 до 15.5, который с запасом перекрывает значения, используемые для моделирования газов и жидкостей. В ходе этих экспериментов моделировались изотермы в диапазоне безразмерных температур T^* от 5 до 100 и безразмерных плотностей ρ_N от 0.7 до 5.8. Эти значения соответствуют широкодиапазонному уравнению состояния жидкостей и газов, и, таким образом, применимы к задачам данной работы.

моделирования По результатам было проведено сравнение безразмерной избыточной внутренней энергии E^{ex} и безразмерного фактора сжатия $Z = \frac{\beta P}{2} - 1$, полученных помощи предлагаемого уравнения состояния при MHMSA референсными Монте-Карло С результатами [91]и результатами широко распространённой Фрида термодинамической теорией возмущений KLRR-T, взятыми из литературы [28].

Таблица 2.1: Избыточная внутренняя энергия E^{ex} и фактор сжатия Z для референсных расчётов Фрида

α	T^*	$ ho_N$	EOS	E^{ex}	ΔE^{ex} ,%	Z	ΔZ ,%
13.5	5	0.6661	MK	-0.4143	0.0001	1.6934	0.0005
13.5	5	0.6661	TTB-1	-0.4068	1.8000	1.6844	-0.5300
13.5	5	0.6661	TTB-2	-0.4077	1.5900	1.6836	-0.5800
13.5	5	0.6661	ИУР	-0.4151	-0.1901	1.6886	-0.2864
13.5	5	0.8	MK	-0.4741	0.0001	2.0332	0.0005
13.5	5	0.8	TTB-1	-0.4702	0.8200	2.0213	-0.5900
13.5	5	0.8	TTB-2	-0.4713	0.6000	2.0211	-0.5900
13.5	5	0.8	ИУР	-0.4761	-0.4313	2.0247	-0.4202
13.5	5	0.9998	MK	-0.5264	0.0001	2.7721	0.0006
13.5	5	0.9998	TTB-1	-0.5272	-0.1600	2.7571	-0.5400
13.5	5	0.9998	TTB-2	-0.5281	-0.3300	2.7585	-0.4900
13.5	5	0.9998	ИУР	-0.5319	-1.0447	2.7534	-0.6742
13.5	5	1.1003	MK	-0.5281	0.0002	3.2796	0.0008
13.5	5	1.1003	TTB-1	-0.5310	-0.5500	3.2620	-0.5400
13.5	5	1.1003	TTB-2	-0.5317	-0.6800	3.2643	-0.4700
13.5	5	1.1003	ИУР	-0.5366	-1.6117	3.2516	-0.8543

13.5	5	1.3336	MK	-0.4382	0.0003	4.9181	0.0013
13.5	5	1.3336	TTB-1	-0.4449	-1.5300	4.8795	-0.7900
13.5	5	1.3336	TTB-2	-0.4449	-1.5200	4.8822	-0.7300
13.5	5	1.3336	ИУР	-0.4579	-4.4988	4.8530	-1.3227
13.5	5	1.4991	MK	-0.2666	0.0003	6.5626	0.0014
13.5	5	1.4991	TTB-1	-0.2743	-2.8900	6.5259	-0.5600
13.5	5	1.4991	TTB-2	-0.2743	-2.8900	6.5246	-0.5800
13.5	5	1.4991	ИУР	-0.2979	-11.7568	6.4598	-1.5659
13.5	20	1.2728	MK	0.2758	0.0001	3.2726	0.0005
13.5	20	1.2728	TTB-1	0.2745	-0.4600	3.2619	-0.3300
13.5	20	1.2728	TTB-2	0.2745	-0.4700	3.2624	-0.3100
13.5	20	1.2728	ИУР	0.2698	2.1668	3.2558	-0.5121
13.5	20	1.4142	MK	0.3772	0.0002	3.8111	0.0008
13.5	20	1.4142	TTB-1	0.3744	-0.7500	3.7902	-0.5500
13.5	20	1.4142	TTB-2	0.3744	-0.7400	3.7907	-0.5400
13.5	20	1.4142	ИУР	0.3684	2.3400	3.7862	-0.6542
13.5	20	1.7678	MK	0.7449	0.0002	5.5654	0.0007
13.5	20	1.7678	TTB-1	0.7405	-0.6000	5.5452	-0.3600
13.5	20	1.7678	TTB-2	0.7405	-0.6000	5.5453	-0.3600
13.5	20	1.7678	ИУР	0.7267	2.4486	5.5144	-0.9168
13.5	20	2.1213	MK	1.3204	0.0004	8.0191	0.0012
13.5	20	2.1213	TTB-1	1.3198	-0.0500	8.0255	0.0800
13.5	20	2.1213	TTB-2	1.3190	-0.1100	8.0225	0.0400
13.5	20	2.1213	ИУР	1.2897	2.3281	7.9350	-1.0491
13.5	20	2.4749	MK	2.1596	0.0005	11.3049	0.0014
13.5	20	2.4749	TTB-1	2.1710	0.5300	11.3681	0.5600
13.5	20	2.4749	TTB-2	2.1680	0.3900	11.3575	0.4700
13.5	20	2.4749	ИУР	2.1167	1.9877	11.1907	-1.0101
13.5	20	2.8284	MK	3.3155	0.0010	15.5323	0.0027
13.5	20	2.8284	TTB-1	3.3486	1.0000	15.6777	0.9400
13.5	20	2.8284	TTB-2	3.3413	0.7800	15.6538	0.7800
13.5	20	2.8284	ИУР	3.2654	1.5122	15.4025	-0.8359
13.5	20	2.8991	MK	3.5881	0.0006	16.4962	0.0017
13.5	20	2.8991	TTB-1	3.6273	1.0900	16.6630	1.0100
13.5	20	2.8991	TTB-2	3.6189	0.8600	16.6356	0.8500
13.5	20	2.8991	ИУР	3.5384	1.3851	16.3682	-0.7759
13.5	100	1.7876	MK	0.5594	0.0001	3.0824	0.0002
13.5	100	1.7876	TTB-1	0.5574	-0.3700	3.0726	-0.3200
13.5	100	1.7876	TTB-2	0.5574	-0.3600	3.0729	-0.3100
13.5	100	1.7876	ИУР	0.5553	0.7270	3.0737	-0.2814
13.5	100	2.0831	MK	0.7491	0.0001	3.7175	0.0002

13.5	100	2.0831	TTB-1	0.7488	-0.0400	3.7056	-0.3200
13.5	100	2.0831	TTB-2	0.7489	-0.0300	3.7060	-0.3100
13.5	100	2.0831	ИУР	0.7425	0.8765	3.7032	-0.3834
13.5	100	2.5003	MK	1.0864	0.0002	4.8054	0.0005
13.5	100	2.5003	TTB-1	1.0864	0.0000	4.7956	-0.2000
13.5	100	2.5003	TTB-2	1.0865	0.0100	4.7959	-0.2000
13.5	100	2.5003	ИУР	1.0752	1.0354	4.7810	-0.5084
13.5	100	3.438	MK	2.1968	0.0002	8.1639	0.0005
13.5	100	3.438	TTB-1	2.2042	0.3400	8.1961	0.3900
13.5	100	3.438	TTB-2	2.2033	0.3000	8.1939	0.3700
13.5	100	3.438	ИУР	2.1762	0.9360	8.1218	-0.5162
13.5	100	3.8198	MK	2.8103	0.0003	9.9252	0.0007
13.5	100	3.8198	TTB-1	2.8275	0.6100	9.9863	0.6200
13.5	100	3.8198	TTB-2	2.8275	0.5500	9.9816	0.5700
13.5	100	3.8198	ИУР	2.7875	0.8130	9.8797	-0.4588
13.5	100	5.8025	MK	7.7263	0.0005	22.8577	0.0010
13.5	100	5.8025	TTB-1	7.8186	1.2000	23.1292	1.1900
13.5	100	5.8025	TTB-2	7.8044	1.0100	23.0968	1.0500
13.5	100	5.8025	ИУР	7.7407	-0.1863	22.8828	0.1100
11.5	5	0.6661	MK	-0.4527	0.0001	1.4879	0.0002
11.5	5	0.6661	TTB-1	-0.4441	1.8900	1.4788	-0.6100
11.5	5	0.6661	TTB-2	-0.4449	1.7200	1.4782	-0.6500
11.5	5	0.6661	ИУР	-0.4536	0.1983	1.4838	-0.2764
11.5	5	0.8	MK	-0.5204	0.0001	1.7391	0.0004
11.5	5	0.8	TTB-1	-0.5155	0.9400	1.7281	-0.6300
11.5	5	0.8	TTB-2	-0.5163	0.7800	1.7282	-0.6300
11.5	5	0.8	ИУР	-0.5223	0.3717	1.7329	-0.3573
11.5	5	0.9998	MK	-0.5887	0.0002	2.2833	0.0007
11.5	5	0.9998	TTB-1	-0.5889	-0.0300	2.2687	-0.6400
11.5	5	0.9998	TTB-2	-0.5895	-0.1400	2.2700	-0.5800
11.5	5	0.9998	ИУР	-0.5939	0.8902	2.2686	-0.6442
11.5	5	1.1003	MK	-0.6029	0.0001	2.6491	0.0005
11.5	5	1.1003	TTB-1	-0.6049	-0.3300	2.6340	-0.5700
11.5	5	1.1003	TTB-2	-0.6053	-0.4000	2.6358	-0.5000
11.5	5	1.1003	ИУР	-0.6104	1.2392	2.6298	-0.7277
11.5	5	1.3336	MK	-0.5615	0.0002	3.8032	0.0007
11.5	5	1.3336	TTB-1	-0.5669	-0.9700	3.7713	-0.8400
11.5	5	1.3336	TTB-2	-0.5668	-0.9400	3.7735	-0.7800
11.5	5	1.3336	ИУР	-0.5773	2.8078	3.7627	-1.0660
11.5	5	1.4991	MK	-0.4515	0.0003	4.9210	0.0011
11.5	5	1.4991	TTB-1	-0.4582	-1.4800	4.8900	-0.6300

11.5	5	1.4991	TTB-2	-0.4580	-1.4300	4.8906	-0.6200
11.5	5	1.4991	ИУР	-0.4751	5.2380	4.8612	-1.2152
11.5	20	1.2728	MK	0.2152	0.0001	2.6520	0.0003
11.5	20	1.2728	TTB-1	0.2154	0.0800	2.6434	-0.3200
11.5	20	1.2728	TTB-2	0.2154	0.0800	2.6437	-0.3100
11.5	20	1.2728	ИУР	0.2110	-1.9310	2.6438	-0.3080
11.5	20	1.4142	MK	0.2917	0.0001	3.0071	0.0003
11.5	20	1.4142	TTB-1	0.2901	-0.5600	2.9904	-0.5600
11.5	20	1.4142	TTB-2	0.2901	-0.5500	2.9908	-0.5400
11.5	20	1.4142	ИУР	0.2856	-2.0989	2.9948	-0.4092
11.5	20	1.7678	MK	0.5567	0.0002	4.1057	0.0006
11.5	20	1.7678	TTB-1	0.5535	-0.5800	4.0901	-0.3800
11.5	20	1.7678	TTB-2	0.5536	-0.5600	4.0908	-0.3600
11.5	20	1.7678	ИУР	0.5452	-2.0630	4.0829	-0.5561
11.5	20	2.1213	MK	0.9474	0.0003	5.5395	0.0006
11.5	20	2.1213	TTB-1	0.9465	-0.0900	5.5412	0.0300
11.5	20	2.1213	TTB-2	0.9465	-0.1000	5.5413	0.0300
11.5	20	2.1213	ИУР	0.9294	-1.9000	5.5050	-0.6233
11.5	20	2.4749	MK	1.4842	0.0002	7.3350	0.0005
11.5	20	2.4749	TTB-1	1.4914	0.4900	7.3704	0.4800
11.5	20	2.4749	TTB-2	1.4907	0.4400	7.3686	0.4600
11.5	20	2.4749	ИУР	1.4606	-1.5891	7.2916	-0.5912
11.5	20	2.8284	MK	2.1839	0.0003	9.5048	0.0006
11.5	20	2.8284	TTB-1	2.2034	0.8900	9.5844	0.8400
11.5	20	2.8284	TTB-2	2.2014	0.8000	9.5793	0.7800
11.5	20	2.8284	ИУР	2.1568	-1.2432	9.4571	-0.5016
11.5	20	2.8991	MK	2.3447	0.0004	9.9842	0.0008
11.5	20	2.8991	TTB-1	2.3670	0.9500	10.0731	0.8900
11.5	20	2.8991	TTB-2	2.3646	0.8500	10.0671	0.8300
11.5	20	2.8991	ИУР	2.3171	-1.1790	9.9361	-0.4814
11.5	100	1.7876	MK	0.4564	0.0001	2.3388	0.0002
11.5	100	1.7876	TTB-1	0.4605	0.8900	2.3291	-0.4100
11.5	100	1.7876	TTB-2	0.4605	0.9000	2.3293	-0.4100
11.5	100	1.7876	ИУР	0.4539	-0.5498	2.3361	-0.1160
11.5	100	2.0831	MK	0.5885	0.0001	2.6844	0.0002
11.5	100	2.0831	TTB-1	0.5878	-0.1100	2.6740	-0.3900
11.5	100	2.0831	TTB-2	0.5879	-0.1000	2.6743	-0.3800
11.5	100	2.0831	ИУР	0.5850	-0.5889	2.6812	-0.1209
11.5	100	2.5003	MK	0.8100	0.0001	3.2411	0.0003
11.5	100	2.5003	TTB-1	0.8080	-0.2500	3.2315	-0.3000
11.5	100	2.5003	TTB-2	0.8081	-0.2300	3.2320	-0.2800

11.5	100	2.5003	ИУР	0.8043	-0.7055	3.2357	-0.1659
11.5	100	3.438	MK	1.4657	0.0002	4.7745	0.0003
11.5	100	3.438	TTB-1	1.4768	0.7600	4.7864	0.2500
11.5	100	3.438	TTB-2	1.4769	0.7700	4.7871	0.2600
11.5	100	3.438	ИУР	1.4556	-0.6870	4.7686	-0.1232
11.5	100	3.8198	MK	1.7982	0.0001	5.5049	0.0002
11.5	100	3.8198	TTB-1	1.8087	0.5800	5.5318	0.4900
11.5	100	3.8198	TTB-2	1.8087	0.5800	5.5323	0.5000
11.5	100	3.8198	ИУР	1.7870	-0.6252	5.5007	-0.0768
11.5	100	5.8025	MK	4.1225	0.0002	10.0633	0.0002
11.5	100	5.8025	TTB-1	4.1739	1.2500	10.2145	1.5000
11.5	100	5.8025	TTB-2	4.1720	1.2000	10.2124	1.4800
11.5	100	5.8025	ИУР	4.1366	0.3428	10.1116	0.4801
15.5	5	0.6661	MK	-0.3918	0.0001	1.8522	0.0005
15.5	5	0.6661	TTB-1	-0.3851	1.7100	1.8426	-0.5200
15.5	5	0.6661	TTB-2	-0.3861	1.4600	1.8415	-0.5800
15.5	5	0.6661	ИУР	-0.3928	-0.2583	1.8455	0.3592
15.5	5	0.8	MK	-0.4478	0.0001	2.2639	0.0006
15.5	5	0.8	TTB-1	-0.4442	0.8000	2.2520	-0.5200
15.5	5	0.8	TTB-2	-0.4454	0.5300	2.2516	-0.5400
15.5	5	0.8	ИУР	-0.4499	-0.4640	2.2534	0.4055
15.5	5	0.9998	MK	-0.4906	0.0002	3.1741	0.0009
15.5	5	0.9998	TTB-1	-0.4917	-0.2300	3.1569	-0.5400
15.5	5	0.9998	TTB-2	-0.4929	-0.4600	3.1583	-0.5000
15.5	5	0.9998	ИУР	-0.4967	-1.2513	3.1484	0.8100
15.5	5	1.1003	MK	-0.4848	0.0002	3.8058	0.0009
15.5	5	1.1003	TTB-1	-0.4878	-0.6100	3.7876	-0.4800
15.5	5	1.1003	TTB-2	-0.4886	-0.7900	3.7902	-0.4100
15.5	5	1.1003	ИУР	-0.4942	-1.9314	3.7690	0.9671
15.5	5	1.3336	MK	-0.3600	0.0004	5.9029	0.0021
15.5	5	1.3336	TTB-1	-0.3666	-1.8200	5.8614	-0.7000
15.5	5	1.3336	TTB-2	-0.3667	-1.8500	5.8645	-0.6500
15.5	5	1.3336	ИУР	-0.3832	-6.4554	5.8106	1.5641
15.5	5	1.4991	MK	-0.1387	0.0004	8.0755	0.0018
15.5	5	1.4991	TTB-1	-0.1458	-5.0900	8.0386	-0.4600
15.5	5	1.4991	TTB-2	-0.1462	-5.3700	8.0344	-0.5100
15.5	5	1.4991	ИУР	-0.1772	-27.7908	7.9232	1.8855
15.5	20	1.2728	MK	0.3183	0.0002	3.8413	0.0007
15.5	20	1.2728	TTB-1	0.3166	-0.5400	3.8287	-0.3300
15.5	20	1.2728	TTB-2	0.3165	-0.5500	3.8292	-0.3100
15.5	20	1.2728	ИУР	0.3106	2.4248	3.8143	0.7023

15.5	20	1.4142	MK	0.4411	0.0002	4.5702	0.0010
15.5	20	1.4142	TTB-1	0.4383	-0.6200	4.5449	-0.5500
15.5	20	1.4142	TTB-2	0.4384	-0.6100	4.5454	-0.5400
15.5	20	1.4142	ИУР	0.4295	2.6274	4.5294	0.8935
15.5	20	1.7678	MK	0.9053	0.0004	7.0519	0.0015
15.5	20	1.7678	TTB-1	0.8997	-0.6200	7.0276	-0.3400
15.5	20	1.7678	TTB-2	0.8995	-0.6400	7.0264	-0.3600
15.5	20	1.7678	ИУР	0.8793	2.8686	6.9618	1.2773
15.5	20	2.1213	MK	1.6727	0.0004	10.7386	0.0015
15.5	20	2.1213	TTB-1	1.6739	0.0700	10.7596	0.2000
15.5	20	2.1213	TTB-2	1.6718	-0.0600	10.7499	0.1100
15.5	20	2.1213	ИУР	1.6274	2.7072	10.5852	1.4289
15.5	20	2.4749	MK	2.8574	0.0006	15.9874	0.0020
15.5	20	2.4749	TTB-1	2.8809	0.8200	16.1086	0.7600
15.5	20	2.4749	TTB-2	2.8734	0.5600	16.0780	0.5700
15.5	20	2.4749	ИУР				
15.5	20	2.8284	MK	4.5777	0.0014	23.1372	0.0049
15.5	20	2.8284	TTB-1	4.6418	1.4000	23.4235	1.2400
15.5	20	2.8284	TTB-2	4.6235	1.0000	23.3546	0.9400
15.5	20	2.8284	ИУР				
15.5	20	2.8991	MK	5.0029	0.0024	24.8436	0.0080
15.5	20	2.8991	TTB-1	5.0719	1.3800	25.1517	1.2400
15.5	20	2.8991	TTB-2	5.0505	0.9500	25.0726	0.9200
15.5	20	2.8991	ИУР				
15.5	100	1.7876	MK	0.6555	0.0002	3.8517	0.0006
15.5	100	1.7876	TTB-1	0.6539	-0.2400	3.8381	-0.3500
15.5	100	1.7876	TTB-2	0.6540	-0.2400	3.8384	-0.3400
15.5	100	1.7876	ИУР	0.6486	1.0554	3.8313	0.5287
15.5	100	2.0831	MK	0.9075	0.0002	4.8409	0.0006
15.5	100	2.0831	TTB-1	0.9020	-0.6000	4.8242	-0.3400
15.5	100	2.0831	TTB-2	0.9020	-0.6000	4.8245	-0.3400
15.5	100	2.0831	ИУР	0.8960	1.2683	4.8075	0.6904
15.5	100	2.5003	MK	1.3793	0.0004	6.6265	0.0012
15.5	100	2.5003	TTB-1	1.3811	0.1300	6.6173	-0.1400
15.5	100	2.5003	TTB-2	1.3809	0.1100	6.6166	-0.1500
15.5	100	2.5003	ИУР	1.3599	1.4042	6.5715	0.8306
15.5	100	3.438	MK	3.0966	0.0003	12.7213	0.0010
15.5	100	3.438	TTB-1	3.1111	0.4700	12.7907	0.5500
15.5	100	3.438	TTB-2	3.1073	0.3500	12.7783	0.4500
15.5	100	3.438	ИУР	3.0568	1.2853	12.6132	0.8499
15.5	100	3.8198	MK	4.1193	0.0006	16.1734	0.0018

15.5	100	3.8198	TTB-1	4.1518	0.7900	16.3070	0.8300
15.5	100	3.8198	TTB-2	4.1447	0.6200	16.2842	0.6900
15.5	100	3.8198	ИУР	4.0776	1.0121	16.0627	0.6843
15.5	100	5.8025	MK	12.6972	0.0228	43.1770	0.0559
15.5	100	5.8025	TTB-1	13.6381	7.4100	45.6030	5.6200
15.5	100	5.8025	TTB-2	13.5865	7.0000	45.4641	5.3000
15.5	100	5.8025	ИУР				

Из таблицы (2.1) видно хорошее согласие результатов для большинства расчётных точек. Для подавляющего большинства точек отклонения полученных давлений и энергий от референсных результатов Монте-Карло не превышает 1%.

2.4. Выводы

- Разработан алгоритм решения многокомпонентного уравнения состояния на основе замыкающего уравнения MHMSA.
- Реализовано соответствующее программное приложение и проведено его профилирование.
- Изучена возможность и проведена адаптация алгоритма под возможности современных векторизованных параллельных вычислительных систем.
- Проверка реализованного приложения сравнением с референсными результатами атомистического Монте-Карло моделирования и опубликованными в литературе результатами термодинамической теории возмущений показала хорошее согласие в широком диапазоне параметров молекулярных потенциалов и термодинамических параметров.

Глава З

Моделирование состояний на ударных адиабатах

3.1. Эксперименты на ударных трубах и легкогазовых пушках

Моделирование состояний на ударных адиабатах сжиженных классическим способом проверки газов является применимости широкодиапазонных уравнений состояния для газовой и жидкостной фазы в области высоких давлений. Многокомпонентность состава в сильных ударных волнах обеспечивается протекающими процессами диссоциации и рекомбинации. В качесте моделируемых веществ были выбраны продукты систем $C_w H_x N_y O_z$, а именно N_2 , O_2 , CO_2 . Особый интерес представляла система СО₂ по причине содержания в продуктах заметно отличающихся молекул, включая сравнительно лёгкий атомарный кислород О и сравнительно тяжёлый дипольный диоксид углерода СО₂.

Ударноволновые эксперименты с заявленными системами могут быть проведены на ударных трубах, легкогазовых пушках, импульсных Z-pinch установках. Для расчётов были выбраны эксперименты на ударных трубах и легкогазовых пушках с диапазоном максимальных давлений $10^1 - 10^2$ ГПа. Моделирование значительно более высоких давлений, получаемых в установках Z-pinch, выходит за рамки данной работы по причине высоких степеней ионизации и необходимости анализа квантовых эффектов [92][93][94], что не соответствует понятию молекулярной системы.

Экспериментальные данные в виде *PV*-зависимостей были взяты из литературы [95] [96] [91] [97].

3.2. Методика моделирования состояний на ударных адиабатах

Экспериментальные данные по ударным волнам не содержат сведений о химическом составе смеси за фронтом волны. Температура ударного фронта либо измеряется с недостаточной точностью, либо не измеряется вовсе. Для полноценного моделирования ударных волн требуется термодинамический включающий иметь КОД, в себя помимо термических уравнений состояния фаз ещё и калорические уравнения состояния веществ. Кроме того, в нём должен быть реализован некоторый алгоритм поиска термодинамического равновесия системы при заданных условиях. Одним из таких алгоритмов является метод экстремума характеристических функций МЭХФ.

Для тестирования предложенного в данной работе термического уравнения состояния проводилось моделирование состояний смеси флюидов на ударной адиабате, включающих в себя температуру и химический состав продуктов, полученный ИЗ проверенного [28] [98]. B готового термодинамического кода TDS320 качестве термического уравнения состояния этот код использует однокомпонентную термодинамическую теорию возмущений KLRR-T с моделью эффективного флюида Вандер-Ваальса vdW1f. В качестве калорических уравнений состояния использовались полиномы ИВТАНТЕРМО [99]. доступные http://www.chem.msu.su/rus/handbook/ivtan/.

Парные параметры потенциалов молекулярного взаимодействия (Таб. 3.1) были найдены в [28] [98] решением обратной задачи моделирования ударных волн и изотермического сжатия.

Суть проводимого исследования заключалась в совместном сравнении результатов уравнений состояния MHMSA, HMSA+vdW1f и KLRR-T+vdW1f с результатами

Таблица 3.1: Параметры парных потенциалов Викторова.

	ϵ/k , K	r_m , A	α		ϵ/k , K	r_m , A	α
$\mathbf{N}_2 - \mathbf{N}_2$	100.6	4.25	12.3	$\mathrm{CO}_2 - \mathrm{O}^{LB}$	252.5	3.39	12.6
$N_2 - N$	109.9	3.45	11.3	CO - CO	103.5	4.12	14.0
$\mathbf{N} - \mathbf{N}$	120.0	2.65	10.4	$\mathrm{CO}-\mathrm{O}_2$	99.8	3.96	14.3
$\mathrm{CO}_2-\mathrm{CO}_2$	230.2	4.22	13.8	CO - O	169.3	3.35	12.7
$\mathrm{CO}_2-\mathrm{CO}$	154.4	4.17	13.9	$O_2 - O_2$	96.2	3.79	14.7
$\mathrm{CO}_2-\mathrm{O}_2$	148.8	4.00	14.2	$O_2 - O$	163.2	3.18	13.0
$CO_2 - O^{\mathit{non-LB}}$	252.5	3.09	12.6	O - O	277.0	2.57	11.5

молекулярного Монте-Карло моделирования, проведённого при той же температуре, плотности, химическом составе и параметрах парных потенциалов. Для атомистического моделирования использовался проверенный код MCCCS Towhee [100] [101] [102] http://towhee.sourceforge.net/. Каждое Монте-Карло моделирование было проведено на системе из 1000 молекул и включало 500 000 конфигураций.

3.3. Результаты моделирования

В начале было проведено моделирование эксперимента [95] [96] [91] [103] [104] [105] [106], в ходе которого жидкий N_2 при T = 77 K, $\rho = 0.808$ г/см³, E = -2.842 ккал/моль сжимался в ударных волнах до 90 ГПа. Существенных различий в результатах теоретических моделей, включая результаты молекулярного моделирования методом Монте-Карло, обнаружено не было (Таб. 3.2) по причине близких значений параметров парных потенциалов молекулярного взаимодействия для N_2 и N, обеспечивших хорошую точность для модели Ван-дер-Ваальса. Все рассмотренные модели хорошо согласуются с экспериментальными данными.

Аналогичные результаты (Таб. 3.3) были получены для экспериментов [95] с О₂ при начальном состоянии T = 77 K, $\rho = 1.202$ г/см³, E = -1.413 ккал/моль.

Более интересные результаты ожидались для CO₂ по причине более широкого диапазона параметров

Таблица 3.2: Ударная волна в N₂.

Τ,	V,	Ν,	P_{MC} ,	P_{MHMSA} ,	P_{KLRR-T} ,	P_{HMSA} ,
K	cm ³ /mol	mol fr	GPa	GPa	GPa	GPa
6250.62	13.9775	0.01	27.8175	28.0658	27.9144	27.8511
7762.14	12.8458	0.05	35.3262	35.6305	35.2586	35.0871
8691.28	11.9067	0.10	41.2595	41.6046	40.9150	40.2663
9372.67	11.1152	0.15	46.4226	46.7977	45.7627	45.1424
9951.11	10.4045	0.20	51.3316	51.7311	50.3328	49.7281
10477.0	9.74999	0.25	56.1382	56.5819	54.8113	54.2196
10974.9	9.13870	0.30	60.9504	61.4330	59.2931	58.7143
11458.7	8.56270	0.35	65.7961	66.3336	63.8355	63.2705
11936.2	8.01554	0.40	70.7165	71.3315	68.4757	67.9503
12418.3	7.49594	0.45	75.7019	76.3980	73.2429	72.9512
12896.7	6.99902	0.50	80.7324	81.5564	78.1373	77.8390
13379.6	6.52214	0.55	85.7994	86.8342	83.1793	82.8848
13884.7	6.06323	0.60	91.0303	92.2862	88.4176	87.9888
14449.3	5.62074	0.65	96.3131	98.0327	93.9669	93.3688

парных потенциалов его продуктов. Начальное состояние находилось при T = 218 К, $\rho = 1.173$ г/см³, E = -98.486 ккал/моль [97] [107] [108] [105] [103]. Были проведены два моделирования. Химический состав в первом моделировании (Таб. 3.4) был представлен двухкомпонентной смесью CO₂ и O.

Все теоретические данные находятся в хорошем согласии друг с другом и результатами экспериментов до 50 ГПа (Рис. 3.1). Уравнения HMSA+vdW1f и KLRR-T+vdW1f согласуются друг с другом, но показывают заниженные значения давления по сравнению с референсным моделированием Монте-Карло. В то же время уравнение состояния MHMSA, основанное на том же HMSA, хорошо согласуется с моделированием всём диапазоне. атомистическим BO Ha этих результатов делается вывод основании об ограниченности области применимости модели Ван-дер-Baaльca vdW1f.

Целью второго моделирования (Таб. 3.4) была проверка МНМSA на 4-х компонентном составе CO₂-CO-O₂-O. Пиковое

Таблица 3.3: Ударная волна в О₂.

Τ,	V,	О,	P_{MC} ,	P_{MHMSA} ,	P_{KLRR-T} ,
Κ	cm ³ /mol	mol fr	GPa	GPa	GPa
3533.09	12.8809	0.01	23.2491	23.0117	23.2718
4505.07	11.9160	0.05	30.8252	30.5381	30.5578
5186.43	11.1469	0.10	36.9711	36.6546	36.2525
5751.10	10.5094	0.15	42.4354	42.0936	41.1891
6295.90	9.97000	0.20	47.3658	46.9971	45.5495
6826.28	9.44414	0.25	52.6903	52.3128	50.2653
7377.19	8.95463	0.30	58.1664	58.1651	55.0870
7964.26	8.49512	0.35	63.8318	63.4103	60.0871
8602.66	8.06122	0.40	69.7347	69.2981	65.3319
9310.18	7.64964	0.45	75.9348	75.4866	70.8958
10108.3	7.25788	0.50	82.5106	82.0414	76.8657
11026.5	6.88387	0.55	89.5346	89.0577	83.3579
12106.8	6.52594	0.60	97.1429	96.6729	90.5357
13412.9	6.18262	0.65	105.588	105.103	98.6447

отклонение от результатов Монте-Карло по давлению составило 1%-2%.

Структура многокомпонентной флюидной системы может быть визуализирована при помощи радиальных функций распределения (Рис.3.2). На рисунке видно расхождение кривых для разных компонентов как по радиусу минимума, так и по амплитуде. Таким образом подтверждена ограниченность применимости модели vdW1f в области высоких давлений. Кроме того, видно хорошее согласие каждой из кривых с результатами атомистического моделирования.

3.4. Выводы

• Погрешность обоих однокомпонентных уравнений KLRR-T и HMSA при использовании вместе С приближением эффективного однокомпонентного флюида vdW1f удовлетворительная для N_2 , O_2 и неудовлетворительна для СО₂ при давлениях выше Таблица 3.4: 2-х компонентное моделирование ударной волны в CO₂.

Τ,	V,	О,	P_{MC} ,	P_{MHMSA} ,	P_{KLRR-T} ,	P_{HMSA} ,
K	cm ³ /mol	mol fr	GPa	GPa	GPa	GPa
5526.71	14.3819	0.10	45.773	45.3499	44.2675	45.5290
5818.85	13.5348	0.15	49.407	48.9652	46.9546	48.1209
6179.90	12.6746	0.20	54.038	53.5671	50.5793	51.6349
6598.30	11.8423	0.25	59.254	58.7436	54.7552	55.6798
7097.12	11.0381	0.30	65.182	64.6240	59.6382	60.4027
7708.12	10.2619	0.35	71.995	71.3965	65.4399	66.0177
8479.81	9.51365	0.40	80.003	79.3351	72.4686	72.8313
9120.13	8.89867	0.45	85.142	84.4260	77.0644	75.0472
10917.5	8.10127	0.50	101.67	100.825	92.4499	92.3224
11897.9	7.58011	0.55	107.23	106.364	98.2409	97.9158
14138.6	7.00222	0.60	121.00	120.037	112.003	111.462

50 ГПа.

- Погрешность обоих уравнений с использованием vdW1f растёт с разницей параметров межмолекулярных потенциалов моделируемых частиц.
- Предлагаемое в данной работе многокомпонентное уравнение MHMSA превосходит однокомпонентные по точности, которая является удовлетворительной во всех проведённых исследованиях.
- Уравнение MHMSA позволяет получать радиальные функции распределения, находящиеся в хорошем согласии с атомистическим моделированием в более широком диапазоне давлений, чем однокомпонентные HMSA и KLRR-T.

Рис. 3.1: Ударная волна в СО₂.

Таблица 3.5: 4-х компонентное моделирование ударной волны в CO₂.

Τ,	V,	CO,	O_2 ,	О,	P_{MC} ,	P_{MHMSA} ,
K	cm ³ /mol	mol fr	mol fr	mol fr	GPa	GPa
3272.45	17.6642	0.005	0.005	0.000	24.6922	24.5493
3959.25	16.7319	0.019	0.019	0.000	31.1241	30.9075
4657.80	15.6798	0.045	0.045	0.000	39.1896	39.1696
5419.44	14.5754	0.079	0.078	0.000	49.8404	49.7790
6076.94	13.6104	0.089	0.121	0.001	61.6153	62.1243
7362.91	12.4214	0.159	0.158	0.001	81.3286	81.9168
8649.50	11.4451	0.199	0.197	0.001	103.466	104.447
10184.9	10.5787	0.236	0.234	0.001	131.149	132.111
11989.9	9.82976	0.268	0.265	0.001	163.581	165.019

Таблица 3.6: Максимальные и средние отклонения давления при моделировании ударных адиабат.

MAX,%	$\delta^{MC}_{KLRR-T+vdW1f}$	$\delta^{MC}_{HMSA+vdW1f}$	δ^{MC}_{MHMSA}
$N_2 \ { m 2f}$	3.2	3.9	1.8
O_2 2f	6.9		1.1
CO_2 2f	9.4	11.9	0.9
CO_2 4f			0.9
_			
AVG,%	$\delta^{MC}_{KLRR-T+vdW1f}$	$\delta^{MC}_{HMSA+vdW1f}$	δ^{MC}_{MHMSA}
AVG,% N ₂ 2f	$\delta^{MC}_{KLRR-T+vdW1f}$ 2.2	$\delta^{MC}_{HMSA+vdW1f}$ 2.9	$\delta^{MC}_{MHMSA} \ 1.0$
$\overline{AVG}, \%$ N_2 2f O_2 2f	$\delta^{MC}_{KLRR-T+vdW1f}$ 2.2 4.7	$\delta^{MC}_{HMSA+vdW1f}$ 2.9	$\delta^{MC}_{MHMSA} \ 1.0 \ 0.6$
${ m AVG}, { m \%} \ N_2 \ 2{ m f} \ O_2 \ 2{ m f} \ CO_2 \ 2{ m f}$	$\delta^{MC}_{KLRR-T+vdW1f} 2.2 4.7 7.6$	$\delta^{MC}_{HMSA+vdW1f}$ 2.9 6.9	δ^{MC}_{MHMSA} 1.0 0.6 0.8

Рис. 3.2: Функции распределения для СО₂.

Глава 4

Моделирование холодных изотермических экспериментов

4.1. Эксперименты на осциллирующем денситометре и аппарате Митчела

Моделирование экспериментов по изотермическому сжатию является классическим способом проверки широкодиапазонных газовых и жидкостных уравнений состояния, поскольку область повышенных плотностей при сравнительно низких температурах является потенциально проблемной. Кроме того, процессы ударноволнового и изотермического сжатия вместе представляют собой базис непересекающихся процессов, позволяющий исключить подгонку моделей под конкретный физический процесс.

Для моделирования были выбраны вещества класса Эксперимент изотермическому $C_w H_x N_y O_z$. ΠО сжатию трёхкомпонентной CO_2 - CH_4 - N_2 смеси проводился на осциллирующем денситометре при температурах 423.15 К, 573.15 К и давлениях 19.94 МПа, 39.94 МПа, 59.93 МПа, 99.93 МПа [109]. Смесь NH₃-N₂-H₂ сжималась в аппарате Митчела при температурах 423 К, 473 К, 523 К, 573 К и давлениях в диапазоне 7.3 — 156.7 МПа [110].

В этих экспериментах были измерены полные РVТ-

данные с химическим составом, что позволило проводить моделирование непосредственно при помощи термического уравнения состояния без использования каких-либо дополнительных моделей и приближений.

4.2. Результаты моделирования

В начале моделировались изотермические эксперименты в смесях CO₂-CH₄-N₂ при температурах 423.15 К, 573.15 Ки давлениях 19.94 МПа, 39.94 МПа, 59.93 МПа, [109]. Химический состав был известен из 99.93 MПa экспериментальных данных и варьировался в пределах от 0.1 до 0.8 мольных долей по различным компонентам. Моделирование проводилось при помощи предлагаемого многокомпонентного уравнения MHMSA и методом Монте-Карло. Использовались два набора параметров потенциалов межмолекулярного взаимодействия EXP-6. Первый набор (Таб.4.1) был найден Викторовым С. Б. решением обратной [28] [98]. Второй набор (Таб.4.2) был задачи методом Фридом решением обратной задачи методом найден HMSA/MC+vdW1f с использование калорических уравнений состояния JANAF на изотермах и ударных адиабатах [73].

Таблица 4.1: Параметры парных потенциалов EXP-6 Викторова

	ϵ/k , K	r_m , A	α
$\mathrm{CO}_2-\mathrm{CO}_2$	230.2	4.22	13.8
$\mathrm{CO}_2-\mathrm{CH}_4$	182.7	4.25	13.2
$\mathrm{CO}_2 - \mathrm{N}_2$	152.2	4.24	13.0
$\mathrm{CH}_4-\mathrm{CH}_4$	145.0	4.28	12.7
$\mathrm{CH}_4-\mathrm{N}_2$	120.8	4.27	12.5
$N_2 - N_2$	100.6	4.25	12.3

Таблица 4.4: Результаты моделировании изотерм CO₂-CH₄-N₂.

Victorov

Τ,	V,	CH_4 ,	\mathbf{N}_2 ,	$P_{MHMSA-3f}$,	P_{MC} ,
Κ	cm³/mole	mol fr	mol fr	MPa	MPa
323.15	122.8421	0.4	0.4	18.9730	19.0884
323.15	110.1968	0.3	0.3	18.8750	19.0937
323.15	93.41082	0.2	0.2	19.0030	19.3733
323.15	116.9454	0.8	0.1	19.2973	19.3434
323.15	116.4031	0.6	0.2	19.0838	19.1941
323.15	123.6613	0.6	0.3	19.1269	19.1770
323.15	115.4830	0.4	0.3	18.9008	19.0856
323.15	113.1902	0.2	0.4	18.9086	19.1899
323.15	135.2806	0.1	0.8	19.1871	19.2468
323.15	127.7728	0.2	0.6	19.0167	19.1583
323.15	118.1278	0.3	0.4	18.9576	19.0934
323.15	106.8708	0.4	0.2	18.8682	19.0901
323.15	73.09780	0.4	0.4	37.2006	37.4987
323.15	59.76840	0.2	0.2	40.0569	40.8047
323.15	58.76659	0.3	0.1	40.2776	40.7853
323.15	60.70916	0.1	0.3	40.0180	41.0382
323.15	53.08596	0.1	0.1	46.7129	47.0998
323.15	70.35070	0.8	0.1	38.4340	38.6514
323.15	70.06072	0.6	0.2	37.7258	37.9819
323.15	73.33202	0.6	0.3	37.9238	38.1210
323.15	66.46416	0.6	0.1	37.9011	38.1491
323.15	68.89764	0.4	0.3	37.8312	38.2811
323.15	67.18878	0.2	0.4	38.4784	39.2352
323.15	79.49615	0.1	0.8	37.7695	37.9687
323.15	74.92391	0.2	0.6	37.7371	38.0832
323.15	70.07439	0.3	0.4	37.8518	38.3528
323.15	65.26868	0.4	0.2	38.0674	38.5392
323.15	58.87469	0.4	0.4	58.3824	58.6354
323.15	51.43266	0.2	0.2	64.4116	64.7862
323.15	51.01428	0.3	0.1	64.6327	64.7472
323.15	51.71703	0.1	0.3	64.8350	65.6357
323.15	58.02989	0.8	0.1	59.2373	59.1986
323.15	57.70895	0.6	0.2	58.3824	58.5041
323.15	59.65856	0.6	0.3	58.1294	58.2986
323.15	55.71031	0.6	0.1	59.0589	59.0924
323.15	56.98354	0.4	0.3	58.5072	58.8001
323.15	55.90789	0.2	0.4	59.5643	60.3063
323.15	63.04666	0.1	0.8	57.4772	57.7831
323.15	60.25357	0.2	0.6	57.9392	58.4286

323.15	61.75332	0.3	0.6	57.5904	57.8526
323.15	58.69133	0.1	0.6	58.4731	59.2281
323.15	57.46222	0.3	0.4	58.7222	59.2176
323.15	54.79553	0.4	0.2	59.8654	60.2042
323.15	48.68064	0.4	0.4	100.542	100.705
323.15	44.74159	0.2	0.2	112.373	112.297
323.15	44.63465	0.3	0.1	112.460	111.900
323.15	44.65710	0.1	0.3	114.359	114.925
323.15	48.67483	0.8	0.1	100.762	100.582
323.15	48.33155	0.6	0.2	100.309	100.212
323.15	49.21995	0.6	0.3	99.7826	99.7173
323.15	47.28744	0.6	0.1	102.416	101.989
323.15	47.64092	0.4	0.3	102.288	102.458
323.15	46.86722	0.2	0.4	104.982	105.601
323.15	50.11558	0.1	0.8	100.607	100.993
323.15	48.99709	0.2	0.6	101.004	101.486
323.15	49.95293	0.3	0.6	99.1400	99.3281
323.15	48.03089	0.1	0.6	103.224	104.041
323.15	47.77800	0.3	0.4	102.552	102.955
323.15	46.52113	0.4	0.2	105.393	105.455
573.15	251.1654	0.4	0.4	19.7898	19.8170
573.15	242.9597	0.2	0.2	19.6328	19.6615
573.15	241.5974	0.3	0.1	19.6452	19.6448
573.15	244.4709	0.1	0.3	19.6047	19.6382
573.15	248.0620	0.6	0.2	19.8772	19.8829
573.15	244.3914	0.6	0.1	19.9357	19.9515
573.15	247.6999	0.4	0.3	19.8409	19.8568
573.15	248.7369	0.2	0.4	19.6819	19.7110
573.15	259.6453	0.1	0.8	19.5322	19.5405
573.15	253.8563	0.2	0.6	19.7259	19.7530
573.15	254.3055	0.1	0.6	19.5428	19.5817
573.15	251.0748	0.3	0.4	19.6456	19.6666
573.15	246.8724	0.4	0.2	19.6553	19.6759
573.15	137.1215	0.4	0.4	39.0607	39.1035
573.15	133.8548	0.3	0.3	38.8733	38.9417
573.15	129.8893	0.2	0.2	38.7757	38.8926
573.15	128.9148	0.3	0.1	38.7930	38.8526
573.15	130.9588	0.1	0.3	38.7140	
573.15	125.0039	0.1	0.1	38.8320	38.9302
573.15	134.7891	0.8	0.1	39.5609	39.6034
573.15	135.1047	0.6	0.2	39.2229	

573.15	136.9863	0.6	0.3	39.3343	39.3272
573.15	132.9525	0.6	0.1	39.1547	39.1816
573.15	135.0960	0.4	0.3	38.9839	39.0190
573.15	134.7028	0.2	0.4	38.8599	38.9665
573.15	141.7095	0.1	0.8	38.8932	38.9587
573.15	139.1170	0.2	0.6	38.8720	38.9502
573.15	139.8827	0.3	0.6	39.0723	39.1080
573.15	137.8107	0.1	0.6	38.8319	38.9526
573.15	136.0798	0.3	0.4	38.9150	39.0088
573.15	132.7235	0.4	0.2	38.9751	39.0583
573.15	100.6059	0.4	0.4	58.2244	58.3002
573.15	97.92700	0.3	0.3	58.0424	58.1909
573.15	95.01957	0.2	0.2	57.7968	57.9612
573.15	94.28207	0.3	0.1	57.8784	57.9693
573.15	95.65857	0.1	0.3	57.7836	58.0588
573.15	91.50991	0.1	0.1	57.7942	58.0426
573.15	98.73618	0.8	0.1	59.3216	59.2809
573.15	99.12850	0.6	0.2	58.5342	58.6002
573.15	100.4755	0.6	0.3	58.7841	58.7543
573.15	97.52009	0.6	0.1	58.4131	58.4748
573.15	98.99240	0.4	0.3	58.1582	58.2717
573.15	98.55251	0.2	0.4	57.9977	58.1656
573.15	103.4608	0.1	0.8	58.6109	58.4630
573.15	101.6698	0.2	0.6	58.1939	58.3076
573.15	102.4873	0.3	0.6	58.3869	58.4108
573.15	100.7428	0.1	0.6	58.0458	58.3055
573.15	99.60771	0.3	0.4	58.1099	
573.15	97.33000	0.4	0.2	58.0479	58.1919
573.15	72.40018	0.4	0.4	97.1136	97.2809
573.15	70.88444	0.3	0.3	96.6889	97.0406
573.15	69.02583	0.2	0.2	96.7888	97.1270
573.15	68.81337	0.3	0.1	96.5854	96.6410
573.15	69.27791	0.1	0.3	96.8645	97.3732
573.15	67.02095	0.1	0.1	96.9976	97.2628
573.15	71.61785	0.8	0.1	98.7657	98.6909
573.15	71.69744	0.6	0.2	97.5570	97.6881
573.15	72.42862	0.6	0.3	98.0425	
573.15	70.80038	0.6	0.1	97.3550	97.5492
573.15	71.48693	0.4	0.3	97.0027	97.2936
573.15	71.06216	0.2	0.4	96.9070	97.2498
573.15	73,96219	0.1	0.8	97,1756	97.2423
573.15	72.97236	0.2	0.6	96.9168	97.2143
--------	----------	----------	------------------	------------------	------------
573.15	73.47331	0.3	0.6	97.2861	97.4192
573.15	72.37912	0.1	0.6	96.6893	97.0340
573.15	71.75858	0.3	0.4	96.9776	97.2577
573.15	70.56187	0.4	0.2	96.8084	96.9806
Fried					
Τ,	V,	CH_4 ,	\mathbf{N}_2 ,	$P_{MHMSA-3f}$,	P_{MC} ,
Κ	cm³/mole	mol fr	mol fr	MPa	MPa
323.15	122.842	0.4	0.4	19.6851	19.6933
323.15	110.197	0.3	0.3	19.8263	19.8812
323.15	93.4108	0.2	0.2	20.2858	20.3752
323.15	116.945	0.8	0.1	19.7706	19.8075
323.15	116.403	0.6	0.2	19.7042	19.7610
323.15	123.661	0.6	0.3	19.6842	19.7195
323.15	115.483	0.4	0.3	19.6966	19.7275
323.15	113.190	0.2	0.4	19.9256	19.9692
323.15	135.281	0.1	0.8	19.8997	19.9096
323.15	127.773	0.2	0.6	19.8096	19.8385
323.15	118.128	0.3	0.4	19.8120	19.8272
323.15	106.871	0.4	0.2	19.7477	19.7935
323.15	73.0978	0.4	0.4	38.7233	38.8223
323.15	59.7684	0.2	0.2	41.8100	42.0507
323.15	58.7666	0.3	0.1	41.7725	42.0382
323.15	60.7092	0.1	0.3	42.0363	42.3059
323.15	53.0860	0.1	0.1	47.4223	47.5380
323.15	70.3507	0.8	0.1	39.5845	39.6341
323.15	70.0607	0.6	0.2	39.0816	39.1797
323.15	73.3320	0.6	0.3	39.1801	39.3467
323.15	66.4642	0.6	0.1	39.2962	39.4501
323.15	68.8976	0.4	0.3	39.4652	39.6063
323.15	67.1888	0.2	0.4	40.4518	40.6682
323.15	79.4962	0.1	0.8	39.3029	39.3152
323.15	74.9239	0.2	0.6	39.4388	39.4990
323.15	70.0744	0.3	0.4	39.6069	39.7931
323.15	65.2687	0.4	0.2	39.7176	39.8447
323.15	58.8747	0.4	0.4	59.8868	59.9098
323.15	51.4327	0.2	0.2	65.1029	65.0152
323.15	51.0143	0.3	0.1	65.1789	64.9574
323.15	51.7170	0.1	0.3	65.6853	65.6077
323.15	58.0299	0.8	0.1	60.5986	60.4530
323.15	57.7090	0.6	0.2	59.7878	59.7879

323.15	59.6586	0.6	0.3	59.4773	59.4848
323.15	55.7103	0.6	0.1	60.4202	60.3941
323.15	56.9835	0.4	0.3	60.0046	60.0288
323.15	55.9079	0.2	0.4	61.1652	61.1872
323.15	63.0467	0.1	0.8	59.0396	59.0004
323.15	60.2536	0.2	0.6	59.6087	59.6010
323.15	61.7533	0.3	0.6	59.0466	59.0519
323.15	58.6913	0.1	0.6	60.3149	60.3618
323.15	57.4622	0.3	0.4	60.3146	60.3163
323.15	54.7955	0.4	0.2	61.1982	61.2363
323.15	48.6806	0.4	0.4	100.608	100.425
323.15	44.7416	0.2	0.2	109.862	109.319
323.15	44.6347	0.3	0.1	110.242	109.524
323.15	44.6571	0.1	0.3	111.484	110.975
323.15	48.6748	0.8	0.1	101.701	101.471
323.15	48.3316	0.6	0.2	100.745	100.371
323.15	49.2200	0.6	0.3	100.220	100.049
323.15	47.2874	0.6	0.1	102.703	102.185
323.15	47.6409	0.4	0.3	102.132	101.910
323.15	46.8672	0.2	0.4	104.127	103.930
323.15	50.1156	0.1	0.8	100.429	100.387
323.15	48.9971	0.2	0.6	100.869	100.692
323.15	49.9529	0.3	0.6	99.1682	99.0916
323.15	48.0309	0.1	0.6	102.768	102.662
323.15	47.7780	0.3	0.4	102.252	102.088
323.15	46.5211	0.4	0.2	104.812	104.359
573.15	251.165	0.4	0.4	19.9289	19.9328
573.15	242.960	0.2	0.2	19.8102	19.7926
573.15	241.597	0.3	0.1	19.7936	19.7947
573.15	244.471	0.1	0.3	19.8095	19.8124
573.15	248.062	0.6	0.2	19.9810	19.9774
573.15	244.391	0.6	0.1	20.0365	20.0540
573.15	247.700	0.4	0.3	19.9840	19.9766
573.15	248.737	0.2	0.4	19.8659	19.8510
573.15	259.645	0.1	0.8	19.6965	19.6866
573.15	253.856	0.2	0.6	19.8959	19.8970
573.15	254.305	0.1	0.6	19.7369	19.7379
573.15	251.075	0.3	0.4	19.8056	19.8115
573.15	246.872	0.4	0.2	19.7941	19.7817
573.15	137.121	0.4	0.4	39.4557	39.4574
573.15	133.855	0.3	0.3	39.3427	39.3266

573.15	129.889	0.2	0.2	39.2927	39.3036
573.15	128.915	0.3	0.1	39.2240	39.2556
573.15	130.959	0.1	0.3	39.3122	39.3095
573.15	125.004	0.1	0.1	39.3665	39.3777
573.15	134.789	0.8	0.1	39.7592	39.7278
573.15	135.105	0.6	0.2	39.5202	39.5401
573.15	136.986	0.6	0.3	39.6231	39.6205
573.15	132.952	0.6	0.1	39.4438	39.4146
573.15	135.096	0.4	0.3	39.3915	39.3770
573.15	134.703	0.2	0.4	39.3920	39.3972
573.15	141.709	0.1	0.8	39.3577	39.3695
573.15	139.117	0.2	0.6	39.3525	39.3336
573.15	139.883	0.3	0.6	39.4747	39.4546
573.15	137.811	0.1	0.6	39.3942	39.3588
573.15	136.080	0.3	0.4	39.3773	39.3866
573.15	132.724	0.4	0.2	39.3801	39.3752
573.15	100.606	0.4	0.4	58.8155	58.7867
573.15	97.9270	0.3	0.3	58.7471	58.7198
573.15	95.0196	0.2	0.2	58.5537	58.6121
573.15	94.2821	0.3	0.1	58.5003	58.4955
573.15	95.6586	0.1	0.3	58.6715	58.6722
573.15	91.5099	0.1	0.1	58.5319	58.6134
573.15	98.7362	0.8	0.1	59.6158	59.5594
573.15	99.1285	0.6	0.2	58.9761	58.9873
573.15	100.475	0.6	0.3	59.2103	59.1818
573.15	97.5201	0.6	0.1	58.8426	58.8734
573.15	98.9924	0.4	0.3	58.7698	58.7273
573.15	98.5525	0.2	0.4	58.8008	58.8227
573.15	103.461	0.1	0.8	59.3103	59.0205
573.15	101.670	0.2	0.6	58.9211	58.9259
573.15	102.487	0.3	0.6	58.9855	58.9911
573.15	100.743	0.1	0.6	58.9028	58.9231
573.15	99.6077	0.3	0.4	58.8069	58.7726
573.15	97.3300	0.4	0.2	58.6502	58.6444
573.15	72.4002	0.4	0.4	97.6634	97.6554
573.15	70.8844	0.3	0.3	97.3309	97.3840
573.15	69.0258	0.2	0.2	97.3699	97.3017
573.15	68.8134	0.3	0.1	97.0080	97.1103
573.15	69.2779	0.1	0.3	97.6098	97.6169
573.15	67.0210	0.1	0.1	97.3368	97.3995
573.15	71.6178	0.8	0.1	98.9868	99.0161

573.15	71.6974	0.6	0.2	97.9359	97.8453
573.15	72.4286	0.6	0.3	98.3953	
573.15	70.8004	0.6	0.1	97.7084	97.7810
573.15	71.4869	0.4	0.3	97.5630	97.5059
573.15	71.0622	0.2	0.4	97.6705	97.6315
573.15	73.9622	0.1	0.8	97.8501	97.7681
573.15	72.9724	0.2	0.6	97.6344	97.6635
573.15	73.4733	0.3	0.6	97.8376	97.8229
573.15	72.3791	0.1	0.6	97.5634	97.5619
573.15	71.7586	0.3	0.4	97.6412	97.5960
573.15	70.5619	0.4	0.2	97.3263	97.3224

При анализе результатов моделирования и полученных отклонений давления (Таб.4.3) были сделаны следующие выводы:

- Как результаты предлагаемого уравнения MHMSA, результаты Монте-Карло так моделирования И использованием опубликованных параметров С молекулярных потенциалов могут существенно экспериментальных отклоняться ОТ данных при низких температурах, больших плотностях и большом содержании CO_2 .
- При обнаруженном большом разбросе пиковых значений, средние отклонения не очень велики.
- Отклонение результатов уравнения MHMSA от данных Монте-Карло много меньше отклонения данных Монте-Карло от результатов экспериментов, следовательно:
- Параметры парных потенциалов взаимодействия, найденные с использованием приближения эффективного однокомпонентного флюида vdW1f могут быть мало применимы для многокомпонентного моделирования.
- Набор потенциальных параметров Фрида обеспечивает наименьшее среднее отклонение результатов молекулярного Монте-Карло моделирования от экспериментальных данных.

Таблица 4.2: Параметры парных потенциалов ЕХР-6 Фрида

	ϵ/k , K	r_m , A	α
$\mathrm{CO}_2 - \mathrm{CO}_2$	228.3	4.18	14.1
$\mathrm{CO}_2-\mathrm{CH}_4$	177.4	4.24	13.2
$\mathrm{CO}_2 - \mathrm{N}_2$	148.9	4.18	13.5
$\mathrm{CH}_4-\mathrm{CH}_4$	137.8	4.30	12.3
$\mathrm{CH}_4-\mathrm{N}_2$	115.7	4.24	12.6
$\mathbf{N}_2 - \mathbf{N}_2$	97.1	4.17	13.0

интерес Большой представляет моделирование изотермических экспериментов в трехкомпонентных смесях NH₃-N₂-H₂ при температурах 423 К, 473 К, 523 К, 573 К и давлениях в диапазоне 7.3 — 156.7 МПа [110]. Химический состав был известен из экспериментальных данных и представлял собой три смеси в мольных долях 0.1742-0.2065-0.6195, 0.3800-0.1550-0.4650, 0.4950-0.1262-0.3788 соответственно. Особый интерес заключался в том, что молекула NH₃ является выражено дипольной и при её описании сферически-симметричными потенциалами EXP-6 часто используется полиномиальная температурная поправка для глубины потенциальной ямы, обоснованная вращательных возбуждением степеней свободы И осреднением дипольных взаимодействий по направлению [111]. Подобная поправка используется в параметрах парных потенциалов Викторова С. Б. Кроме наборов параметров потенциалов Викторова (Таб.4.5) и Фрида (Таб.4.7), использовался набор Соузы (Таб.4.6), найденный решением обратной задачи молекулярным методом Монте-Карло на холодных изотермах [80].

Таблица 4.10: Результаты моделировании изотерм CO₂-CH₄-N₂.

Victorov

Τ,	V,	N_4 ,	H_2 ,	$P_{MHMSA-3f}$,	P_{MC} ,
Κ	cm³/mole	mol fr	mol fr	MPa	MPa
423	485.4	0.2065	0.6195	7.32206	7.32987
423	181.8	0.2065	0.6195	20.0946	20.1944

423	110.3	0.2065	0.6195	34.5614	34.8316
423	91.03	0.2065	0.6195	43.1191	
423	76.01	0.2065	0.6195	53.6695	54.6915
423	60.18	0.2065	0.6195	72.9823	75.0743
473	485.4	0.2065	0.6195	8.23137	8.24435
473	181.8	0.2065	0.6195	22.7720	22.9035
473	110.3	0.2065	0.6195	39.4363	39.8609
473	91.03	0.2065	0.6195	49.3472	50.0743
473	76.01	0.2065	0.6195	61.5863	62.7747
473	60.18	0.2065	0.6195	83.9688	86.3317
523	485.4	0.2065	0.6195	9.13770	9.15516
523	181.8	0.2065	0.6195	25.4280	25.5716
523	110.3	0.2065	0.6195	44.2513	44.7193
523	91.03	0.2065	0.6195	55.4863	56.3329
523	76.01	0.2065	0.6195	69.3720	70.6877
523	60.18	0.2065	0.6195	94.7350	97.3576
573	485.4	0.2065	0.6195	10.0417	10.0616
573	181.8	0.2065	0.6195	28.0669	28.2293
573	110.3	0.2065	0.6195	49.0184	49.5575
573	91.03	0.2065	0.6195	61.5531	62.4313
573	76.01	0.2065	0.6195	77.0508	78.4865
573	60.18	0.2065	0.6195	105.319	108.229
423	380	0.155	0.465	9.10487	9.11331
423	86.32	0.155	0.465	40.9752	41.3601
423	72.26	0.155	0.465	50.3689	51.0977
423	59.5	0.155	0.465	64.5665	65.8715
423	47.11	0.155	0.465	91.6304	94.6040
473	380	0.155	0.465	10.3152	10.3267
473	86.32	0.155	0.465	48.2329	48.7122
473	72.26	0.155	0.465	59.6954	60.5252
473	59.5	0.155	0.465	77.0180	78.4817
473	47.11	0.155	0.465	109.695	113.017
523	380	0.155	0.465	11.5156	11.5288
523	86.32	0.155	0.465	55.3091	55.8268
523	72.26	0.155	0.465	68.7646	69.6730
523	59.5	0.155	0.465	89.0883	90.7508
523	47.11	0.155	0.465	127.127	130.617
573	380	0.155	0.465	12.7089	12.7238
573	86.32	0.155	0.465	62.2497	62.8152
573	72.26	0.155	0.465	77.6384	78.6443
573	59.5	0.155	0.465	100.863	102.590

573	47.11	0.155	0.465	144.055	147.835
423	327.5	0.1262	0.3788	10.2862	10.1665
423	125	0.1262	0.3788	25.8942	25.9727
423	77.17	0.1262	0.3788	42.3561	42.8063
423	63.8	0.1262	0.3788	52.8835	53.6400
423	52.39	0.1262	0.3788	69.0713	70.6546
473	327.5	0.1262	0.3788	11.7390	11.7467
473	125	0.1262	0.3788	30.5212	30.6297
473	77.17	0.1262	0.3788	51.3063	51.7373
473	63.8	0.1262	0.3788	64.7636	65.6881
473	52.39	0.1262	0.3788	85.2985	86.8535
523	327.5	0.1262	0.3788	13.1734	13.1837
523	125	0.1262	0.3788	35.0266	35.1264
523	77.17	0.1262	0.3788	59.9542	60.4226
523	63.8	0.1262	0.3788	76.2147	77.0438
523	52.39	0.1262	0.3788	100.903	102.549
573	327.5	0.1262	0.3788	14.5949	14.6088
573	125	0.1262	0.3788	39.4470	39.5871
573	77.17	0.1262	0.3788	68.3861	68.9123
573	63.8	0.1262	0.3788	87.3496	88.2566
573	52.39	0.1262	0.3788	116.026	117.848
Fried					
Τ,	V,	\mathbf{N}_4 ,	H_2 ,	$P_{MHMSA-3f}$,	P_{MC} ,
K	cm³/mole	mol fr	mol fr	MPa	MPa
423	485.4	0.2065	0.6195	7.37878	7.37780
423	181.8	0.2065	0.6195	20.4862	20.4787
423	110.3	0.2065	0.6195	35.5874	35.5116
423	91.03	0.2065	0.6195	44.5931	44.5725
423	76.01	0.2065	0.6195	55.7270	55.6782
423	60.18	0.2065	0.6195	76.1015	75.9752
473	485.4	0.2065	0.6195	8.28118	8.28127
473	181.8	0.2065	0.6195	23.1150	23.1077
473	110.3	0.2065	0.6195	40.3313	40.3006
473	91.03	0.2065	0.6195	50.6297	50.5865
473	76.01	0.2065	0.6195	63.3695	63.2972
473	60.18	0.2065	0.6195	86.6502	86.5762
523	485.4	0.2065	0.6195	9.18201	9.18047
523	181.8	0.2065	0.6195	25.7322	25.7297
523	110.3	0.2065	0.6195	45.0414	45.0076
523	91.03	0.2065	0.6195	56.6147	56.5455
523	76.01	0.2065	0.6195	70.9339	70.8932

523	60.18	0.2065	0.6195	97.0624	9.69052
573	485.4	0.2065	0.6195	10.0815	10.0807
573	181.8	0.2065	0.6195	28.3393	28.3427
573	110.3	0.2065	0.6195	49.7221	49.6966
573	91.03	0.2065	0.6195	62.5543	62.5165
573	76.01	0.2065	0.6195	78.4297	78.3742
573	60.18	0.2065	0.6195	107.354	10.7305
423	380	0.155	0.465	9.25120	9.24938
423	86.32	0.155	0.465	43.5177	43.4877
423	72.26	0.155	0.465	53.8744	53.8342
423	59.5	0.155	0.465	69.4687	69.4185
423	47.11	0.155	0.465	98.6625	98.6671
473	380	0.155	0.465		10.4270
473	86.32	0.155	0.465	50.2293	50.1777
473	72.26	0.155	0.465	62.4246	62.3652
473	59.5	0.155	0.465	80.7757	80.7015
473	47.11	0.155	0.465	114.884	114.803
523	380	0.155	0.465	11.6101	11.6060
523	86.32	0.155	0.465	56.8723	56.8307
523	72.26	0.155	0.465	70.8737	70.7852
523	59.5	0.155	0.465	91.9243	91.8465
523	47.11	0.155	0.465	130.822	130.733
573	380	0.155	0.465	12.7850	12.7840
573	86.32	0.155	0.465	63.4566	63.3957
573	72.26	0.155	0.465	79.2355	79.1972
573	59.5	0.155	0.465	102.935	102.804
573	47.11	0.155	0.465	146.508	146.383
423	327.5	0.1262	0.3788	10.5327	10.4314
423	125	0.1262	0.3788	27.4954	27.4724
423	77.17	0.1262	0.3788	46.2896	46.2598
423	63.8	0.1262	0.3788	58.3931	58.3835
423	52.39	0.1262	0.3788	76.7149	76.7215
473	327.5	0.1262	0.3788	11.9298	11.9270
473	125	0.1262	0.3788	31.7484	31.7133
473	77.17	0.1262	0.3788	54.2806	54.2038
473	63.8	0.1262	0.3788	68.8851	68.7855
473	52.39	0.1262	0.3788	90.8937	90.8525
523	327.5	0.1262	0.3788	13.3213	13.3161
523	125	0.1262	0.3788	35.9649	35.9344
523	77.17	0.1262	0.3788	62.1770	62.1118
523	63.8	0.1262	0.3788	79.2339	79.1875

523	52.39	0.1262	0.3788	104.845	104.790
573	327.5	0.1262	0.3788	14.7084	14.7071
573	125	0.1262	0.3788	40.1515	40.1424
573	77.17	0.1262	0.3788	69.9931	69.8908
573	63.8	0.1262	0.3788	89.4599	89.3805
573	52.39	0.1262	0.3788	118.590	118.410
Souza					
Τ,	V,	N_4 ,	H_2 ,	$P_{MHMSA-3f}$,	P_{MC} ,
Κ	cm³/mole	mol fr	mol fr	MPa	MPa
423	485.4	0.2065	0.6195	7.39211	7.39044
423	181.8	0.2065	0.6195	20.5831	20.5741
423	110.3	0.2065	0.6195	35.8568	35.7694
423	91.03	0.2065	0.6195	44.9940	
423	76.01	0.2065	0.6195	56.3113	56.2938
423	60.18	0.2065	0.6195	77.0596	77.0224
473	485.4	0.2065	0.6195	8.29615	8.29509
473	181.8	0.2065	0.6195	23.2246	23.2201
473	110.3	0.2065	0.6195	40.6382	40.6147
473	91.03	0.2065	0.6195	51.0886	51.0513
473	76.01	0.2065	0.6195	64.0422	63.9918
473	60.18	0.2065	0.6195	87.7657	87.6944
523	485.4	0.2065	0.6195	9.19860	9.19399
523	181.8	0.2065	0.6195	25.8544	25.8561
523	110.3	0.2065	0.6195	45.3861	45.3637
523	91.03	0.2065	0.6195	57.1321	57.0933
523	76.01	0.2065	0.6195	71.6965	71.6178
523	60.18	0.2065	0.6195	98.3394	98.2134
573	485.4	0.2065	0.6195	10.0997	10.0997
573	181.8	0.2065	0.6195	28.4743	28.4621
573	110.3	0.2065	0.6195	50.1054	50.0727
573	91.03	0.2065	0.6195	63.1319	63.0963
573	76.01	0.2065	0.6195	79.2849	79.2118
573	60.18	0.2065	0.6195	108.798	108.718
423	380	0.155	0.465	9.14802	9.14801
423	86.32	0.155	0.465	41.7130	41.6993
423	72.26	0.155	0.465	51.3868	51.4257
423	59.5	0.155	0.465	65.9973	66.1476
423	47.11	0.155	0.465	93.6775	93.9096
473	380	0.155	0.465	10.3358	10.3308
473	86.32	0.155	0.465	48.5732	48.5203
473	72.26	0.155	0.465	60.1542	60.1087

473	59.5	0.155	0.465	77.6269	77.6156
473	47.11	0.155	0.465	110.419	110.505
523	380	0.155	0.465	11.5192	11.5158
523	86.32	0.155	0.465	55.3331	55.2843
523	72.26	0.155	0.465	68.7730	68.7187
523	59.5	0.155	0.465	89.0323	88.9726
523	47.11	0.155	0.465	126.792	126.715
573	380	0.155	0.465	12.6991	12.6978
573	86.32	0.155	0.465	62.0211	61.9583
573	72.26	0.155	0.465	77.2866	77.1977
573	59.5	0.155	0.465	100.277	100.220
573	47.11	0.155	0.465	142.889	142.785
423	327.5	0.1262	0.3788	10.2607	
423	125	0.1262	0.3788	25.7049	25.6888
423	77.17	0.1262	0.3788		42.0211
423	63.8	0.1262	0.3788		52.4405
423	52.39	0.1262	0.3788		68.6816
473	327.5	0.1262	0.3788	11.6714	11.6635
473	125	0.1262	0.3788	30.0674	30.0378
473	77.17	0.1262	0.3788	50.1632	50.1471
473	63.8	0.1262	0.3788		63.1835
473	52.39	0.1262	0.3788		83.0356
523	327.5	0.1262	0.3788	13.0739	13.0685
523	125	0.1262	0.3788	34.3621	34.3218
523	77.17	0.1262	0.3788		58.1911
523	63.8	0.1262	0.3788		73.6855
523	52.39	0.1262	0.3788		97.2556
573	327.5	0.1262	0.3788	14.4704	14.4585
573	125	0.1262	0.3788	38.6126	38.5668
573	77.17	0.1262	0.3788	66.2426	66.1901
573	63.8	0.1262	0.3788		84.1175
573	52.39	0.1262	0.3788	111.378	111.320

При анализе полученных данных моделирования изотерм (Рис.4.1) по максимальным (Таб.4.8) и средним (Таб.4.9) отклонениям давлений были сделаны следующие выводы:

• Результаты расчетов с использованием однокомпонентного уравнения HMSA с приближением vdW1f и параметрами парных потенциалов с температурными дипольными поправками, Таблица 4.3: Максимальные и средние отклонения давления при моделировании изотерм CO₂-CH₄-N₂.

MAX,%	Victorov		
	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423.15K	17.0	17.9	2.5
573.15K	3.6	3.3	0.5
TOTAL	17.0	17.9	2.5
MAX,%	Fried		
	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423.15K	18.7	19.0	0.6
573.15K	2.0	2.8	0.5
TOTAL	18.7	19.0	0.6
AVG,%	Victorov		
AVG,%	Victorov $\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
AVG,% 423.15K	$Victorov \ \delta^{Exp}_{MHMSA-3f} \ 4.2$	$\delta^{Exp}_{MC} {f 4.0}$	$\delta^{MC}_{MHMSA-3f} \ 0.7$
AVG,% 423.15K 573.15K	$\begin{matrix} \text{Victorov} \\ \delta^{Exp}_{MHMSA-3f} \\ 4.2 \\ 3.0 \end{matrix}$	δ^{Exp}_{MC} 4.0 2.2	$\delta^{MC}_{MHMSA-3f}$ 0.7 0.2
AVG,% 423.15K 573.15K TOTAL	$\begin{matrix} \text{Victorov} \\ \delta^{Exp}_{MHMSA-3f} \\ 4.2 \\ 3.0 \\ 3.2 \end{matrix}$	δ^{Exp}_{MC} 4.0 2.2 3.0	$\delta^{MC}_{MHMSA-3f} \ 0.7 \ 0.2 \ 0.4$
AVG,% 423.15K 573.15K TOTAL AVG,%	$\begin{matrix} \text{Victorov} \\ \delta^{Exp}_{MHMSA-3f} \\ 4.2 \\ 3.0 \\ 3.2 \\ \text{Fried} \end{matrix}$	δ^{Exp}_{MC} 4.0 2.2 3.0	$\delta^{MC}_{MHMSA-3f}$ 0.7 0.2 0.4
AVG,% 423.15K 573.15K TOTAL AVG,%	$\begin{matrix} \text{Victorov} \\ \delta^{Exp}_{MHMSA-3f} \\ 4.2 \\ 3.0 \\ 3.2 \\ \text{Fried} \\ \delta^{Exp}_{MHMSA-3f} \end{matrix}$	δ^{Exp}_{MC} 4.0 2.2 3.0 δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$ 0.7 0.2 0.4 $\delta^{MC}_{MHMSA-3f}$
AVG,% 423.15K 573.15K TOTAL AVG,% 423.15K	$\begin{matrix} \text{Victorov} \\ \delta^{Exp}_{MHMSA-3f} \\ 4.2 \\ 3.0 \\ 3.2 \\ Fried \\ \delta^{Exp}_{MHMSA-3f} \\ 2.6 \end{matrix}$	$\delta^{Exp}_{MC} \ 4.0 \ 2.2 \ 3.0 \ \delta^{Exp}_{MC} \ 2.5$	$\delta^{MC}_{MHMSA-3f}$ 0.7 0.2 0.4 $\delta^{MC}_{MHMSA-3f}$ 0.2
AVG,% 423.15K 573.15K TOTAL AVG,% 423.15K 573.15K	$\begin{matrix} \text{Victorov} \\ \delta^{Exp}_{MHMSA-3f} \\ 4.2 \\ 3.0 \\ 3.2 \\ \text{Fried} \\ \delta^{Exp}_{MHMSA-3f} \\ 2.6 \\ 1.5 \end{matrix}$	$\delta^{Exp}_{MC} \ 4.0 \ 2.2 \ 3.0 \ \delta^{Exp}_{MC} \ 2.5 \ 1.6$	$\delta^{MC}_{MHMSA-3f}$ 0.7 0.2 0.4 $\delta^{MC}_{MHMSA-3f}$ 0.2 0.1

подобранными с тем же приближением vdW1f, показывает наилучшее согласие с экспериментальными данными по сравнению с другими уравнениями и другими наборами потенциалов.

- Отклонение результатов расчетов с использованием предлагаемого многокомпонентного уравнения МНМЅА от результатов молекулярного Монте-Карло моделирования много меньше отклонения результатов Монте-Карло моделирования от экспериментальных данных.
- Температурные дипольные поправки, найденные с использованием приближения vdW1f не оказывают существенного влияния на многокомпонентное

Таблица 4.5: Параметры парных потенциалов EXP-6 Викторова

	ϵ/k , K	r_m , A	α	κ, Κ
$\mathrm{NH}_3-\mathrm{NH}_3$	207.0	3.69	12.8	199.0
$\mathbf{N}_2 - \mathbf{N}_2$	100.6	4.25	12.3	0.0
$H_2-H_2 \\$	36.9	3.67	10.6	0.0

Таблица 4.6: Параметры парных потенциалов ЕХР-6 Соузы

ϵ/k , K	r_m , A	α
292.5	3.83	10.7
172.0	3.95	12.8
84.8	3.60	12.0
101.2	4.06	14.8
49.9	3.72	14.1
24.6	3.37	13.3
	ϵ/k , K 292.5 172.0 84.8 101.2 49.9 24.6	$\epsilon/k, K r_m, A$ 292.5 3.83 172.0 3.95 84.8 3.60 101.2 4.06 49.9 3.72 24.6 3.37

уравнение и результаты Монте-Карло моделирования.

 Набор потенциальных параметров Фрида обеспечивает наименьшее отклонение результатов молекулярного Монте-Карло моделирования от экспериментальных данных.

4.3. Выводы

- Как результаты предлагаемого уравнения MHMSA, Монте-Карло так результаты моделирования И опубликованных использованием параметров С молекулярных потенциалов ΜΟΓΥΤ существенно отклоняться экспериментальных данных OT при низких температурах, больших плотностях и большом содержании СО₂.
- При обнаруженном большом разбросе пиковых значений, средние отклонения не очень велики.

Таблица 4.7: Параметры парных потенциалов ЕХР-6 Фрида

	ϵ/k , K	r_m , A	α
$\mathrm{NH}_3-\mathrm{NH}_3$	244.9	3.72	12.0
$\mathrm{NH}_3 - \mathrm{N}_2$	154.2	3.95	12.5
$\mathrm{NH}_3-\mathrm{H}_2$	86.3	3.60	11.6
$N_2 - N_2$	97.1	4.17	13.0
$N_2 - H_2$	54.3	3.83	12.1
H_2-H_2	30.4	3.49	11.2

- Отклонение результатов расчетов с использованием уравнения MHMSA от данных Монте-Карло много меньше отклонения данных Монте-Карло от результатов экспериментов, следовательно:
- Параметры парных потенциалов взаимодействия, найденные с использованием приближения эффективного однокомпонентного флюида vdW1f могут быть мало применимы для многокомпонентного моделирования.
- Результаты расчетов С использованием однокомпонентного уравнения HMSA с приближением параметрами vdW1f потенциалов парных И температурными С дипольными поправками, подобранными с тем же приближением vdW1f, показывает наилучшее согласие с экспериментальными данными по сравнению с другими уравнениями и другими наборами потенциалов.
- Отклонение результатов предлагаемого многокомпонентного уравнения MHMSA от результатов молекулярного Монте-Карло моделирования много меньше отклонения результатов Монте-Карло моделирования от экспериментальных данных.
- Температурные дипольные поправки, найденные с использованием приближения vdW1f не оказывают заметного влияния на многокомпонентное уравнение и результаты Монте-Карло моделирования.

Рис. 4.1: Изотерма NH_3 - N_2 - H_2 .

Таблица	4.8:	Максимальные	отклонения	давления	при
моделиро	вани	и изотерм $\mathrm{NH}_3 ext{-}\mathrm{N}_2$	$_2$ -H $_2$.		

MAX,%	Victorov			
	$\delta^{Exp}_{HMCA+\dots HV16}$	δ^{Exp}_{MHMGA} as	δ^{Exp}_{MG}	δ^{MC}_{MUMGA} 26
423K	6.2	12.4	10.4	3.1
473K	5.4	11.0	9.4	2.9
523K	4.6	10.6	9.1	2.9
573K	4.0	10.7	9.3	2.7
17-21-62	2.5	10.3	7.7	2.8
38-16-46	3.8	10.2	7.3	3.1
49-13-38	6.2	12.4	10.4	2.2
TOTAL	6.2	12.4	10.4	3.1
MAX,%	Souza			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	9.2	8.2	12.9	0.2
473K	10.0	8.2	13.4	0.1
523K	10.8	8.5	13.8	0.1
573K	11.5	14.3	14.3	0.1
17-21-62	3.9	5.9	6.0	0.2
38-16-46	5.8	8.8	8.9	0.2
49-13-38	11.5	14.3	14.3	0.1
TOTAL	11.5	14.3	14.3	0.2
MAX,%	Fried			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	10.6	8.1	8.0	1.0
473K	7.9	6.6	6.7	0.1
523K	5.9	7.1	7.2	0.2
573K	4.4	8.7	8.8	0.2
17-21-62	4.0	7.1	7.2	0.2
38-16-46	4.3	6.5	6.6	0.1
49-13-38	10.6	8.7	8.8	1.0
TOTAL	10.6	8.7	8.8	1.0

Таблица 4.9: Средние отклонения давления при моделировании изотерм NH_3 - N_2 - H_2 .

AVG,%	Victorov			
	$\delta^{Exp}_{HMSA+wdW1f}$	δ^{Exp}_{MHMSA} 3f	δ^{Exp}_{MC}	δ^{MC}_{MHMSA} 3f
423K	2.3	6.2	4 .9	1.3
473K	2.1	5.4	4.3	1.2
523K	2.2	6.4	5.0	1.6
573K	1.8	4.8	3.9	1.1
17-21-62	1.3	5.1	3.9	1.3
38-16-46	2.0	5.6	4.3	1.4
49-13-38	2.8	5.3	4.6	0.9
TOTAL	2.0	5.3	4.2	1.2
AVG,%	Souza			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	2.9	3.3	4.9	0.1
473K	3.1	3.5	4.7	0.1
523K	4.0	4.2	5.9	0.1
573K	3.6	4.8	5.1	0.1
17-21-62	1.6	2.7	2.7	0.1
38-16-46	3.0	5.2	5.2	0.1
49-13-38	5.0	3.7	6.7	0.1
TOTAL	3.1	3.8	4.8	0.1
AVG,%	Fried			
	$\delta^{Exp}_{HMSA+vdW1f}$	$\delta^{Exp}_{MHMSA-3f}$	δ^{Exp}_{MC}	$\delta^{MC}_{MHMSA-3f}$
423K	4.0	3.3	3.3	0.1
473K	2.8	3.1	3.2	0.1
523K	2.8	4.6	3.2	0.1
573K	2.1	3.7	3.8	0.1
17-21-62	1.7	3.3	3.4	0.1
38-16-46	2.1	2.8	2.9	0.1
49-13-38	4.6	4.1	3.9	0.1
TOTAL	2.7	3.4	3.4	0.1

Глава 5

Модель химического реагирования

5.1. Метод экстремума характеристических функций

Уравнение состояния многокомпонентной системы в классическом понимании [112] может быть представлено в виде:

$$f(P, V, T, \chi_i) = 0$$
 (5.1)

где χ_j — мольная доля *j*-го компонента.

Однако, такого уравнения недостаточно для моделирования прикладных задач, поскольку во многих из них неизвестен химический состав, температура или плотность.

Значительная часть прикладных задач может быть сведена к классическим 6-ти статическим и 2-м динамическим задачам поиска равновесного состояния и соответствующего ему экстремума характеристических функций термодинамической системы:

$$\min_{\chi_i,T} u(S,V) \tag{5.2}$$

$$\min_{\chi_j, T, V} h(S, P) \tag{5.3}$$

$$\min_{\chi_j} f(T, V) \tag{5.4}$$

$$\min_{\chi_j, V} g(T, P) \tag{5.5}$$

$$\max_{\chi_j,T} s(U,V) \tag{5.6}$$

$$\max_{\chi_j, T, V} s(H, P) \tag{5.7}$$

$$\min_{\chi_j,T} f(V, (u-u^0) + (P+P^0)(V-V^0)/2 = 0)$$
(5.8)

$$\min_{\chi_j, T, V} D((u - u^0) + (P + P^0)(V - V^0)/2 = 0)$$
(5.9)

где u — удельная на массу внутренняя энергия, h — удельная на массу энтальпия, f — удельная на массу свободная энергия Гельмгольца, g — удельная на массу энергия Гиббса, s — удельная на массу энтропия, u^0, P^0, V^0 — термодинамические параметры перед фронтом волны, D — скорость нормальной детонации.

В дальнейшем, физико-математическая модель нахождения равновесных состояний системы будет называться термодинамическим кодом (TK) для разграничения с уравнением состояния (УрС), которое будет пониматься в узком смысле. При **YpC** этом, необходимой, но недостаточной частью ΤK является [28] [98] [113] [114] [115] [116] [91] [117].

Существует два основных способа построения ТК: метод констант равновесия (МКР) на основе закона действующих (ЗДМ) и масс метод экстремума характеристических (МЭХΦ), функций работающий непосредственно CO потенциалов термодинамических значениями или их производных. По причине сложности описания неидеальных отсутствия однозначности систем И В определении конечных уравнений и переменных в МКР, в данной работе используется МЭХФ.

Для построения универсального алгоритма решения уравнений МЭХФ требуется возможность расчёта значений всех термодинамических потенциалов. Учитывая соотношения «термодинамического квадрата»

$$F = U - TS \tag{5.10}$$

$$H = U + PV \tag{5.11}$$

$$G = U + PV - TS \tag{5.12}$$

от уравнения состояния требуется значения любых двух термодинамических потенциалов.

Теории молекулярных функций распределения (ТТВ, ИУр) построены в терминах безразмерной температуры и плотности, которые с точки зрения расчётного алгоритма являются входными данными. В качестве результата можно рассматривать численные сеточные значения молекулярных функций распределения. Избыточная внутренняя энергия системы может быть найдена напрямую из полученных функций распределения через её определение:

$$U^{ex} = 2\pi\beta \sum_{i=1}^{m} \sum_{j=1}^{m} \rho_i \rho_j \int_0^{+\infty} \phi_{ij}(r) g_{ij}(r) r^2 dr$$
 (5.13)

Вторым доступным для вычисления потенциалом является свободная энергия Гельмгольца по причине фиксированных значений температуры И плотности. ТТВ позволяет находить численные значения энергии Гельмгольца на основе значений для базисного флюида. Для ИУР требуются дополнительные внешние соотношения. Используя соотношение Максвелла может быть получено интегральное выражение

$$F^{ex} = \int_0^\rho \frac{\frac{\beta P^{ex}(\beta, \rho^*)}{\rho^*} - 1}{\rho^*} d\rho^*$$
(5.14)

Зачастую, более удобным в реализации является его модифицированный вариант в виде формулы Кирквуда [118].

Следует отметить, что численное интегрирование в достаточно большом диапазона значений при жестких требованиях по ограничению накопленной ошибки требует значительных вычислительных ресурсов. Вычислительная производительность может быть улучшена параллельным интегрированием за счёт низких требований по обмену информацией между вычислительными потоками.

Кроме того, существует возможность использования дополнительных внешних соотношений для конкретных замыкающих уравнений, позволяющих найти энергию Гельмгольца или её производные в виде химических потенциалов. Примером такого метода может служить интегрирование Чандури-Госша [119]. В данной работе использовался метод прямого интегрирования по Кирквуду, поскольку он не использует дополнительных приближений.

Полные значения внутренней энергии и энергии Гельмгольца могут быть рассчитаны на основе избыточных значений и калорических полиномов (H_T^0 и S_T^0) [120] [99].

$$U = U_T^0 + U^{ex} (5.15)$$

$$F = F_T^0 + F^{ex} (5.16)$$

Решение МЭХΦ является решением задачи условного экстремума храктеристической функции, условием которого выступают заданные фиксированные значения соответствующих задаче макроскопических 5.25.35.45.55.65.75.85.9 термодинамических параметров и закон сохранения массы химических элементов (ЗСМХЭ)

$$\sum_{j=1}^{m} a_{ij} n_j = \sum_{j=1}^{m} a_{ij} n_j^0$$
(5.17)

где a_{ij} — масса атомов *i*-го химического элемента удельная на число молекул *j*-го вещества, n_j — число молекул *j*-го вещества в продуктах, удельное на массу системы, n_j^0 число молекул *j*-го вещества в реагентах, удельное на массу системы.

Для решения задачи ударной волны в качестве заданного термодинамического параметра в настоящей работе использовалась плотность за фронтом волны. Для замыкания задачи вместо второго параметра используется уравнение адиабаты Гюгонио (АГ)

С точки зрения алгоритма, задача сводится к вложенной итерации с варьированием температуры для удовлетворения АГ в родительском цикле и решением TV-задачи в дочернем цикле.

Задача о детонации Чепмена-Жуге представляет собой задачу нахождения минимума скорости нормальной детонации при условии соблюдения ЗСМХЭ [112].

На основе описанной выше модели был самостоятельно разработан новый термодинамический код SCOZA-TS, использующий уравнение состояния MHMSA. Исходный код программы доступен под свободной лицензией GPLv3+ https://github.com/mechanicalapple/scoza_ts.

5.2. Моделирование экспериментов с диссоциацией и рекомбинацией

Описанное выше моделирование состояний на ударной адиабате жидкого азота [95] [96] [91] [103] [104] [105] [106] с фиксированной температурой и химическим составом позволило выделить расхождения результатов, вызванные исключительно влиянием нового уравнения состояния.

Для выяснения влияния найденных выше ошибок на результат полноценного моделирования ударной волны при помощи термодинамического кода было проведено новое моделирование 5.15.1 с равновесными составами и температурами для каждого из уравнений состояния MHMSA (SCOZA-TS) и KLRR-T (TDS320) в отдельности. Для корректности сравнения, в моделировании при помощи SCOZA-TS использовались калорические полиномы ИВТАНТЕРМО [99] и параметры парных молекулярных потенциалов 3.1, аналогичные использованным в коде TDS320.

Таблица	5.1:	Ударная	волна	В	N_2 .
---------	------	---------	-------	---	---------

T_{MHMSA} ,	\mathbf{N}_{MHMSA} ,	P_{MHMSA} ,
Κ	mol fr	GPa
6352.64	0.003865	27.9502
8078.90	0.039257	35.8889
9135.67	0.083899	42.1755
9860.43	0.138607	47.4158
10409.4	0.192368	52.2689
10869.7	0.249709	56.8558
11464.9	0.342720	64.1038
11566.4	0.363502	65.5858
11837.4	0.419496	69.8275
12078.8	0.477386	73.8483
12262.6	0.532805	77.7959
	$T_{MHMSA},$ K 6352.64 8078.90 9135.67 9860.43 10409.4 10869.7 11464.9 11566.4 11837.4 12078.8 12262.6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Максимальное отклонение давления при равновесных температурах и составах в TDS320 и SCOZA-TS составило 8.1%, среднее — 2.8%, что существенно выше аналогичных

Рис. 5.1: Ударная адиабата N₂.

показателей (1.8% и 1.0% соответственно) при сравнении уравнения состояния KLRR-Т и MHMSA на одинаковых TDS320. температурах составах ИЗ Согласие С И экспериментальными данными удовлетворительное для обоих ТК без явного преимущества одного ИЗ них. Согласие кода SCOZA-TS с экспериментами может быть улучшено подбором параметров парным межмолекулярных потенциалов решением обратных задач моделирования ударных волн и изотерм по аналогии с TDS320.

равновесных Максимальное отклонение температур 5.2 составило 18.2%, 5.0%. Точность среднее _ экспериментальных данных по температурам в ударных волнах ограничена возможностями бесконтактной спектрометрии. С учётом погрешностей опубликованных данных, оба ТК согласуются с экспериментом.

Максимальное отклонение равновесных мольных долей молекулярного азота 5.3 составило 6.6%, среднее — 2.6%.

Рис. 5.2: Температура в ударной волне N₂.

На основании полученных данных можно сделать вывод о значительном влиянии на точку термодинамического равновесия сравнительно небольших расхождений уравнений состояния.

Качественное значение для понимания свойств газов при экстремально высоких давлениях имеет наличие зон с отрицательными значениями коэффициента Грюнайзена [121]

$$\mathbf{G} = V \left(\frac{\partial P}{\partial U}\right)_V \tag{5.18}$$

Наличие или отсутствие подобных зон приводит к принципиально разным конвекционным свойствам сжатой среды, что имеет первоочередное значение для моделей атмосфер планет гигантов.

Значения коэффициента Грюнайзена на ударной адиабате жидкого азота были найдены методом численного

Рис. 5.3: Диссоциация в ударной волне N₂.

дифференцирования давления по внутренней энергии системы через варьирование температуры возле равновесного значения.

Результаты SCOZA-TS подтверждают данные TDS320 5.4 о наличии зоны с отрицательным значением коэффициента Грюнайзена.

Для изучения влияния сложности составов и межмолекулярных парных потенциалов на расхождение между результатами нового уравнения состояния было проведено моделирование ударно волновых экспериментов с жидким аммиаком [104] [122] [123]. Аммиак сжимался ударными волнами из состояния при T = 230 K, $\rho = 0.693$ г/см³, E = -17.4 ккал/моль.

Особенностью данной системы является дипольная аммиака. Одним ИЗ принятых молекула подходов Κ моделированию полярных молекул является использование температурных поправок глубине Κ потенциальной

Рис. 5.4: Коэффициент Грюнайзена в ударной волне N₂.

ямы сферически симметричного потенциала. В данном моделировании использовались как простые потенциалы Фрида 5.3, так и уточнённые потенциалы Викторова 5.2 с температурными дипольными поправками. Кроме того, в начальной стадии диссоциации в составе продуктов ударной волны преобладают компоненты NH₃, H и N₂, что требует минимум трёхкомпонентного моделирования. Для данных экспериментов имеются опубликованные результаты квантово-молекулярного моделирования [124].

Моделирование методом МЭХФ для SCOZA-TS (MHMSA) и TDS320 (KLRR-T+vdW1f) проводилось с использованием калориметрических полиномов ИВТАНТЕРМО [99].

Полученные ударные адиабаты для SCOZA-TS и TDS320 потенциалами Викторова С уточнёнными значительно отклоняются друга (Таб. 5.4). Ha друг OT участке данными имеющимися экспериментальными оба С термодинамических кода укладываются В диапазон Таблица 5.2: Параметры парных потенциалов EXP-6 Викторова

	ϵ/k , K	r_m , A	α	κ, Κ
$\mathrm{NH}_3-\mathrm{NH}_3$	207.0	3.69	12.8	199.0
$N_2 - N_2$	100.6	4.25	12.3	0.0
$\mathrm{H}-\mathrm{H}$	110.0	1.55	10.0	0.0

Таблица 5.3: Параметры парных потенциалов ЕХР-6 Фрида

	ϵ/k , K	r_m , A	α
$\mathrm{NH}_3-\mathrm{NH}_3$	244.9	3.72	12.0
$N_2 - N_2$	97.1	4.17	13.0
H - H	50.0	2.10	11.0

экспериментальной погрешности. Ударная адиабата, построенная на основе опубликованных данных квантовомолекулярного моделирования, лежит между адиабатами SCOZA-TS и TDS320 (Рис. 5.5). По мере роста давления расхождение увеличивается до 20% (Рис. 5.5), температуры — до 20% (Рис. 5.6), мольной доли непродиссоциировавшего аммиака — до 45% (Рис. 5.7).

Ударные адиабаты SCOZA-TS и TDS320, полученные с использованием более старых и более простых параметров Фрида согласуются существенно лучше (Таб. 5.5). На $P - \rho$ диаграмме хорошо видно, что поправки Викторова улучшают согласие с экспериментальными и первопринципными данными для однокомпонентного TDS320 и ухудшают для более точного трёхкомпонентного SCOZA-TS. Следует отметить, что использование таких поправок существенно влияет на получаемый равновесный химический состав системы (Рис. 5.7).

Полученные результаты показывают, что усложнённые потенциалы с дополнительными поправками, найденными решением обратной задачи для однокомпонентного моделирования с использованием модели эффективного флюида Ван-дер-Ваальса, могут вызывать значительные отклонения в случае полноценного многокомпонентного

Рис. 5.5: Ударная адиабата NH₃.

моделирования. Подтверждается вывод о необходимости верификации опубликованных ранее параметров парных потенциалов взаимодействия молекул и их уточнения с использованием более детальных термодинамических моделей.

5.3. Выводы

- На основе уравнения MHMSA построен термодинамический код SCOZA-TS.
- Моделирование ударных волн в жидком азоте и аммиаке показало удовлетворительное согласие расчетов на основе термодинамических кодов SCOZA-TS и TDS320 с экспериментальными данными.
- Использование поправок потенциалов, найденных

Рис. 5.6: Температура в ударной волне NH₃.

решением обратной задачи моделирования с использованием модели эффективного флюида Вандер-Ваальса, приводит к ухудшению результатов для более точных моделей.

- Результаты SCOZA-TS могут быть улучшены подборкой новой единой базы данных параметров парных молекулярных потенциалов для максимально выборки возможной веществ на основе экспериментальных данных для различных их смесей.
- Показано, что незначительные расхождения в значениях термодинамических параметров, найденных на основе различных уравнений состояния, могут приводить к значительным отклонениям точек термодинамического равновесия.
- Результаты SCOZA-TS подтверждают данные TDS320 о

Рис. 5.7: Диссоциация в ударной волне NH₃.

наличии зон с отрицательным значением коэффициента Грюнайзена на ударной адиабате жидкого азота.

Таблица 5.4: Ударная волна в NH₃. Потенциалы Викторова.

V,	T_{MHMSA} ,	$NH3_{MHMSA}$,	P_{MHMSA} ,
cm³/g	Κ	mol fr	GPa
1.77570	4825.74	0.887162	65.3344
1.88119	6167.02	0.860636	83.9533
2.00000	7544.93	0.883854	107.325
V,	T_{KLRR-T} ,	$\mathbf{NH3}_{KLRR-T}$,	P_{KLRR-T} ,
cm³/g	K	mol fr	GPa
1.27517	1104.83	0.999991	14.2275
1.30137	1220.69	0.999982	15.7693
1.32867	1351.25	0.999964	17.4966
1.35714	1498.07	0.999913	19.4339
1.38686	1663.06	0.999747	21.6089
1.41791	1847.33	0.999208	24.0476
1.45038	2051.64	0.997622	26.7723
1.48438	2274.24	0.993641	29.7892
1.52000	2511.10	0.985327	33.0856
1.55738	2758.50	0.970904	36.6454
1.59664	3016.22	0.949573	40.4747
1.63793	3288.11	0.921569	44.6116
1.68142	3580.87	0.887673	49.1217
1.72727	3902.83	0.848786	54.0902
1.77570	4263.46	0.805743	59.6189
1.82692	4673.14	0.759305	65.8246
1.88119	5142.53	0.710238	72.8336
1.93878	5685.03	0.659577	80.7891
2.00000	6291.54	0.608070	89.7113

Таблица 5.5: Ударная волна в NH₃. Потенциалы Фрида.

V,	T_{MHMSA} ,	$NH3_{MHMSA}$,	P_{MHMSA} ,
cm³/g	Κ	mol fr	GPa
1.77570	4704.21	0.942682	61.3553
1.88119	6036.18	0.931600	78.8227
2.00000	7544.93	0.930588	100.664
V,	T_{KLRR-T} ,	$NH3_{KLRR-T}$,	P_{KLRR-T} ,
cm³/g	Κ	mol fr	GPa
1.50000	2313.46	0.999650	29.0169
1.57895	2911.79	0.997266	36.8680
1.66667	3676.25	0.986569	47.0190
1.76471	4667.27	0.956420	60.3038
1.87500	5941.51	0.898816	77.9044
2.00000	7739.01	0.817475	102.180

Заключение

- Разработано новое многокомпонентное замыкающее уравнение MHMSA и уравнение состояния многокомпонентной смеси в общем виде на его основе.
- Реализован алгоритм решения термодинамических интегральных уравнений.
- Разработана методика анализа погрешностей на молекулярной функции распределения.
- Реализован и оптимизирован параллельный на общей памяти программный код для решения уравнения MHMSA.
- Проведено 2-х и 4-х компонентное моделирование состояний на ударных адиабатах жидких N₂, O₂, CO₂ до давления 90 ГПа.
- Проведено 3-х компонентное моделирование изотермических экспериментов CO₂-CH₄-N₂ при температурах 323.15 573.15 К при давлениях 19.94 99.93 МПа.
- Проведено 3-х компонентное моделирование изотермических экспериментов NH_3 - N_2 - H_2 при температурах 323 573 К при давлениях 7.3 156.7 МПа.
- Показано отрицательное влияние приближения однокомпонентного эффективного флюида Ван-дер-Ваальса на опубликованные в справочной литературе параметры парных потенциалов молекулярного взаимодействия и поправки к ним.
- Показано хорошее согласие результатов расчетов разработанного уравнения MHMSA на основе молекулярного Монте-Карло С результатами моделирования для всех проведённых моделирований во всех заявленных диапазонах со значительным преимуществом над однокомпонентными уравнениями с использованием модели эффективного флюида Вандер-Ваальса.

- Разработанное замыкающее уравнение позволяет получать высококачественные молекулярные функции распределения, пригодные для теоретического анализа широкого круга термодинамических систем.
- Гипотеза применимости модели построения самосогласованных замыканий на основе парциальных изотермической сжимаемости выражений для осреднения разноимённых интерполирующих И параметров для высокотемпературных плазменных систем была применена к газовым и жидкостным системам в широком диапазоне давлений и температур.
- На основе уравнения MHMSA построен термодинамический код SCOZA-TS.
- Моделирование ударных волн в жидком азоте и аммиаке показало удовлетворительное согласие расчетов на основе термодинамических кодов SCOZA-TS и TDS320 с экспериментальными данными.
- Использование поправок потенциалов, найденных решением обратной задачи моделирования с использованием модели эффективного флюида Вандер-Ваальса, приводит к ухудшению результатов для более точных моделей.
- Результаты SCOZA-TS могут быть улучшены подборкой новой параметров единой базы данных парных молекулярных потенциалов для максимально веществ возможной выборки основе на экспериментальных данных для различных их смесей.
- Показано, что незначительные расхождения в значениях термодинамических параметров, найденных на основе различных уравнений состояния, могут приводить к значительным отклонениям точек термодинамического равновесия.

Литература

- [1] Аникеев А.А., Викторов С.Б., Губин С.А. Широкодиапазонное уравнение состояния флюида на основе интегральных уравнений для парных корреляционных функций // Вестник Национального Исследовательского Ядерного Университета МИФИ. – 2012. – Vol. 1, no. 1. – Р. 48.
- [2] Anikeev A. A., Viktorov S. B., Gubin S. A. Equation of state of a supercritical fluid based on the Ornstein-Zernike equation // Russian Journal of Physical Chemistry B. – 2014. – Vol. 8, no. 1. – P. 56-60. – URL: http://dx.doi. org/10.1134/S1990793114010023.
- [3] Аникеев А.А., Викторов С.Б., Губин С.А. Уравнение состояния сверхкритического флюида на основе уравнения Орнштейна-Цернике // Химическая Физика. – 2014. – Vol. 33, no. 1. – Р. 20.
- [4] Моделирование сверхкритического флюида: Тестирование уравнений состояния / А.А. Аникеев, Ю.А. Богданова, С.Б. Викторов et al. // Вестник Национального Исследовательского Ядерного Университета МИФИ. – 2014. – Vol. 3, no. 2. – Р. 184.
- [5] Расчет ударных адиабат N2 и CO2 с использованием многокомпонентных уравнений состояния / А.А. Аникеев, Ю.А. Богданова, С.Б. Викторов, С.А. Губин // Горение и взрыв. – 2014. – Vol. 7, no. 7. – Р. 170–174.
- [6] Equation of state for N2 and CO2 shock Hugoniots / A.A. Anikeev, Yu.A. Bogdanova, S.A. Gubin, S.B. Victorov //

Trancient combustion and detonation phenomena. – Moscow : Torus Press, 2014. – P. 601-606.

- [7] Уравнение состояния для моделирования ударных волн в системах N2 и CO2 / А.А. Аникеев, Ю.А. Богданова, С.Б. Викторов, С.А. Губин // Научная сессия НИЯУ МИФИ-2014. – Москва : Национальный исследовательский ядерный университет "МИФИ", 2014. – Р. 114.
- [8] Область применимости модели эффективного однокомпонентного флюида в сравнении с точной моделью уравнения состояния двухкомпонентных систем / Ю.А. Богданова, С.А. Губин, С.Б. Викторов, А.А. Аникеев // Горение и взрыв. – 2014. – Vol. 7, no. 7. – Р. 175-180.
- [9] Theretical model of equation-of-state for binary fluid and analysis of the choise of unlike-interaction potential on results of calculation / Yu.A. Bogdanova, S.A. Gubin, A.A. Anikeev, S.B. Victorov // Trancient combustion and detonation phenomena. – Moscow : Torus Press, 2014. – P. 614-621.
- [10] Аникеев A.A., Богданова Ю.А., Губин C.A. Проблема замыканий для многокомпонентной теории интегральных уравнений // Научная сессия МИФИ-2015.— Москва : Национальный НИЯУ исследовательский ядерный университет "МИФИ", 2015. – P. 230.
- [11] Аникеев А.А., Богданова Ю.А., Губин С.А. Многокомпонентная версия замыкания HMSA для моделирования ударных адиабат CO2, N2 и O2 // Горение и взрыв. – 2015. – Vol. 8, no. 1. – Р. 183-189.
- [12] Anikeev A A, Bogdanova Yu A, Gubin S A. The multicomponent self-consistent Ornstein—Zernike application for CO 2 , N 2 , O 2 shock Hugoniots simulation // Journal of Physics: Conference Series. – 2015. – Vol. 653, no. 1. – P. 012055. – URL: http://stacks.iop.org/1742-6596/653/i=1/a=012055.

- [13] Anikeev A.A., Bogdanova Yu.A., Gubin S.A. Reliability Distribution Functions of Radial Obtained from Muticomponent {HMSA} Integral Equation for {CO2} Shock Product Mixture // Physics Procedia. - 2015. -Vol. 72. – P. 318 – 323. – Conference of Physics of Nonequilibrium Atomic Systems and Composites, {PNASC} 2015, 18-20 February 2015 and Conference Heterostructures for Microwave, Power and of Optoelectronics: Physics, Technology and Devices, 19 February 2015. URL: http://www.sciencedirect.com/ science/article/pii/S1875389215012729.
- [14] Применение теоретической модели уравнения состояния для расчета термодинамических параметров двухкомпнентной смеси NH3-H2 использованием модифицированной формы потенциала ЕХР-6 / Ю.А. Богданова, С.А. Губин, С.Б. Викторов et al. // Химическая физика. - 2015. -Vol. 34, no. 5. – P. 66.
- [15] Limits of the applicability of the effective one-fluid model / Yu. A. Bogdanova, A. A. Anikeev, S. A. Gubin, S. B. Victorov // Russian Journal of Physical Chemistry A. - 2015. - Vol. 89, no. 5. - P. 741-746. - URL: http: //dx.doi.org/10.1134/S003602441505009X.
- [16] Влияние потенциальных параметров на точность моделирования термодинамического детонации / C.A., Богданова Ю.А., Губин Викторов С.Б., Аникеев А.А. // Научная сессия НИЯУ МИФИ-2015. -Москва : Национальный исследовательский ядерный университет "МИФИ", 2015. – Р. 245.
- [17] Application of a theoretical equation-of-state model for calculating the thermodynamic parameters of NH3-H2 binary mixtures based on a modified Exp-6 intermolecular interaction potential / Yu. A. Bogdanova, S. A. Gubin, S. B. Victorov et al. // Russian Journal of Physical Chemistry B. 2015. Vol. 9, no. 3. P. 392–398. URL: http://dx.doi.org/10.1134/S1990793115030033.
- [18] Границы применимости модели эффективного однокомпонентного флюида / Ю.А. Богданова,
А.А. Аникеев, С.А. Губин, С.Б. Викторов // Журнал физической химии. — 2015. — Vol. 89, no. 5. — Р. 746-751.

- [19] Богданова Ю.А., Губин С.А., Аникеев А.А. Расчет ударных адиабат Н2 и D2 на основе теоретической модели уравнения состояния // Горение и взрыв. – 2015. – Vol. 8, по. 1. – Р. 190-197.
- [20] Dissociation of Shock-Compressed Liquid Hydrogen and Deuterium / Yu.A. Bogdanova, S.A. Gubin, A.A. Anikeev, S.B. Victorov // Physics Procedia. – 2015. – Vol. 72. – P. 329 – 332. – Conference of Physics of Nonequilibrium Atomic Systems and Composites, {PNASC} 2015, 18-20 February 2015 and Conference of Heterostructures for Microwave, Power and Optoelectronics: Physics, Technology and Devices, 19 February 2015. URL: http://www.sciencedirect.com/science/article/ pii/S1875389215012742.
- [21] Применение теоретической модели уравнения состояния для расчета ударных адиабат CO2 N2, 02, / Юлия Андреевна Богданова, Сергей Александрович Губин, Борисович Сергей Викторов, Артем Андреевич Аникеев // Известия высших учебных заведений. Физика. - 2016. - Vol. 59, no. 2. - Р. 30-35.
- [22] Богданова Ю.А., Губин С.А., Аникеев А.А. Модель эффективного двухкомпонентного флюида для расчета термодинамических параметров трехкомпонентных смесей // Горение и взрыв. – 2016. – Vol. 9, no. 2. – P. 103-110.
- [23] Bogdanova Yu.A., Gubin S.A., Victorov S.B. Modeling of detonation of high explosives // Достижения в физике детонации. – Moscow : Torus Press, 2016. – Р. 180-187.
- [24] Application of a Theoretical Model of State Equation for Calculation of N2, O2, and CO2 Shock Adiabatic Curves / Yu. A. Bogdanova, S. A. Gubin, S. B. Victorov, A. A. Anikeev // Russian Physics Journal. – 2016. – Vol. 59,

no. 2. — P. 190-196. — URL: http://dx.doi.org/10. 1007/s11182-016-0758-z.

- [25] Thermodynamic modelling of detonation H-N-O high explosives / Yu A Bogdanova, S A Gubin, A A Anikeev, S B Victorov // Journal of Physics: Conference Series. – 2016. – Vol. 751, no. 1. – P. 012018. – URL: http:// stacks.iop.org/1742-6596/751/i=1/a=012018.
- [26] Bogdanova Yu A, Gubin S A, Anikeev A A. Theoretical model of the equation of state for ternary fluid mixtures with exp-6 potential // Journal of Physics: Conference Series. - 2016. - Vol. 774, no. 1. - P. 012041. - URL: http://stacks.iop.org/1742-6596/774/i=1/a=012041.
- [27] Anikeev A.A., Bogdanova Y.A., Gubin S.A. ACCELERATING PERFORMANCE OF A MULTICOMPONENT SELF-CONSISTENT ORNSTEIN-ZERNIKE APPLICATION // PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING. -Moscow : National University Research Nuclear MEPhI (Moscow Engineering Physics Institute), 2017. – P. 105-107.
- [28] Викторов Сергей Борисович. Термодинамическое моделирование сложных химических систем при высоких давлениях И температурах Диссертация соискание ученой на степени кандидата физико-математических наук : 01.04.14 / Сергей Борисович Викторов ; Московский инженернофизический институт. – Москва, 2006.
- Theory [29] Hansen J.-P., McDonald I.R. of Simple Liquids. – 2006. cited Bv 800. URL: https://www.scopus.com/inward/record.uri? eid=2-s2.0-84882133065&partnerID=40&md5= 1fb36685b6b52f955a8d71a2bf93d780.
- [30] Frenkel Daan, , Smit Berend. Understanding Molecular Simulation (Second Edition). – Second Edition edition. – San Diego : Academic Press, 2002. – ISBN: 978-0-12-267351-1. – URL: http://www.sciencedirect.com/ science/article/pii/B9780122673511500006.

- [31] Reaction ensemble molecular dynamics: Direct simulation of the dynamic equilibrium properties of chemically reacting mixtures / JK Brennan, M Lisal, KE Gubbins, BM Rice // PHYSICAL REVIEW E. – 2004. – DEC. – Vol. 70, no. 6, 1.
- [32] ReaxFF: A reactive force field for hydrocarbons / ACT van Duin, S Dasgupta, F Lorant, WA Goddard // JOURNAL OF PHYSICAL CHEMISTRY A. – 2001. – OCT 18. – Vol. 105, no. 41. – P. 9396–9409.
- of chemical [33] Calculation detonation waves with hydrodynamics and a thermochemical equation of state / WM Howard, LE Fried, PC Souers, PA Vitello // SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS / Ed. by Furnish, MD and Thadhani, NN and Horie, Y ; Amer Phys Soc, SCCM Top Grp; Amer Phys Soc, Educ Div; Georgia Inst Technol. -Vol. 620 of AIP CONFERENCE PROCEEDINGS. – 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA : AMER INST PHYSICS, 2002. -P. 161-164. -12th International Conference of the Topical-Group-on-Shock-American-Physical-Society Compression-of-Condensed-Matter, ATLANTA, GA, JUN 24-29, 2001.
- [34] Detonation product EOS studies: Using ISLS to refine cheetah / JM Zaug, WM Howard, LE Fried, DW Hansen // SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS / Ed. by Furnish, MD and Thadhani, NN and Horie, Y ; Amer Phys Soc, SCCM Top Grp; Amer Phys Soc, Educ Div; Georgia Inst Technol. Vol. 620 of AIP Conference Proceedings. 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA : AMER INST PHYSICS, 2002. P. 177–180. 12th International Conference of the American-Physical-Society Topical-Group-on-Shock-Compression-of-Condensed-Matter, ATLANTA, GA, JUN 24-29, 2001.
- [35] J.-L. Bretonnet. Thermodynamic Perturbation Theory of Simple Liquids // Thermodynamics - Interaction Studies -

Solids, Liquids and Gases / J.C. Moreno-Pirajan. — InTech, 2011. — P. 839–870. — ISBN: 978-953-307-563-1.

- [36] Schöll-Paschinger Elisabeth. Self-Consistent Ornstein-Zernike Approximation For Simple Fluids and Their Mixtures : Dipl.-Ing. Dr. techn. / Elisabeth Schöll-Paschinger; Technische Universität Wien. – Wien, 2004. – URL: http://smt.tuwien.ac.at/extra/publications/ diploma/paschinger-ma.pdf.
- [37] BROWN WB. ANALYTICAL REPRESENTATION OF THE EXCESS THERMODYNAMIC EQUATION OF STATE FOR CLASSICAL FLUID MIXTURES OF MOLECULES INTERACTING WITH ALPHA-EXPONENTIAL-6 PAIR POTENTIALS UP TO HIGH-DENSITIES // JOURNAL OF CHEMICAL PHYSICS. – 1987. – JUL 1. – Vol. 87, no. 1. – P. 566–577.
- [38] Lee L.L. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids // Journal of Chemical Physics. — 2011. — Vol. 135, no. 20. — cited By 4. URL: https://www.scopus. com/inward/record.uri?eid=2-s2.0-82555182726& doi=10.1063%2f1.3663221&partnerID=40&md5= acee48f2ac551cacf99dd40b6075800d.
- [39] Саркисов Г. Н. Приближенные уравнения теории жидкостей в статистической термодинемике классических жидких систем // Успехи физических наук. – 1999. – Vol. 169, по. 6. – Р. 625-642.
- [40] Malijevský A., Barošová M., Smith W.R. Integral equation and computer simulation study of the structure of additive hard-sphere mixtures // Molecular Physics. – 1997. – Vol. 91, no. 1. – P. 65-73. – cited By 19. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0642306541&partnerID=40&md5= 49f3da359fadbd637376312e2c822bd1.
- [41] Del Río F., Guzmán O., Malijevský A. An integral equation and Monte Carlo study of square-well fluid mixtures // Journal of Physical Chemistry.—

1995. -- Vol. 99, no. 5. -- P. 1587-1593. -- cited By 7. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0010997464&partnerID=40&md5= 08b92efeb3b384003c68807af68e65ac.

- [42] Jiang H., Adidharma H. Study of thermodynamic properties of symmetric and asymmetric electrolyte systems in mixture with neutral components: Monte Carlo simulation results and integral equation predictions // Molecular Simulation. – 2015. – Vol. 41, no. 9. – P. 727-734. – cited By 1. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-84927174580&doi= 10.1080%2f08927022.2014.923572&partnerID=40&md5= e7d16bc9ae33f9279fc9a2cc33eded76.
- [43] Labik S., Malijevský A., Voňka P. A rapidly convergent method of solving the oz equation // Molecular Physics. - 1985. - Vol. 56, no. 3. - P. 709-715. cited By 271. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-84946647357&doi= 10.1080%2f00268978500102651&partnerID=40&md5= fc75b0d2905ab477e448b3292cfc23f5.
- [44] Lee L.L. Chemical potentials based on the molecular functions. An distribution exact diagrammatical representation and the function The star Journal of Chemical Physics. -1992. – Vol. 97, 11. – P. 8606-8616. -cited Bv 94. URL: no. https://www.scopus.com/inward/record.uri? eid=2-s2.0-0000423199&partnerID=40&md5= 514f8dca25a1fdde3b4b6202449a5ea1.
- [45] An investigation of the SCOZA for narrow squarewell potentials and in the sticky limit / D. Pini, Colombo, L. A. Parola, J. Reatto Molecular _____ Physics. – 2011. – Vol. 109, no. 7-10. – P. 1343cited By 5. URL: https://www.scopus.com/ 1361. – inward/record.uri?eid=2-s2.0-79957871216&doi= 10.1080%2f00268976.2011.558028&partnerID=40&md5= 2e07102a19e362df8726cc004294b253.
- [46] Caccamo C., Pizzimenti G., Blum L. An improved closure for the Born-Green-Yvon equation for the electric

double layer // The Journal of Chemical Physics.-1986.- Vol. 84, no. 6.- P. 3327-3335.- cited By 22. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0000394559&partnerID=40&md5= c1f955241afe7986c27728a68a68beba.

- [47] Tutschka C., Kahl G. The mean spherical model for a Lorentz-Berthelot mixture of sticky hard spheres // Journal of Chemical Physics. — 1998. — Vol. 108, no. 22. — P. 9498-9505. — cited By 22. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0001549073&partnerID=40&md5= 12e10b4afdfafef615997c3b76e3ff16.
- [48] Generalized mean-spherical-approximation description of highly asymmetric hard-sphere mixtures / C. Caccamo, G. Pellicane, R. Ricciari, G. Faggio // Journal of Physics Condensed Matter. - 2000. - Vol. 12, no. 12. - P. 2613-2622. - cited By 10. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-0000224477&doi=10. 1088%2f0953-8984%2f12%2f12%2f304&partnerID=40& md5=e6561a08594d59ea2a1f4e2f6846b404.
- [49] Blum L, Ubriaco M. Variational extensions of the mean spherical approximation // PHYSICA A. – 2000. – MAY 1. – Vol. 279, no. 1-4. – P. 224–235.
- [50] Blum L, Holovko MF, Protsykevych IA. A solution of the multiple-binding mean spherical approximation for ionic mixtures // JOURNAL OF STATISTICAL PHYSICS. – 1996. – JUL. – Vol. 84, no. 1-2. – P. 191–204.
- [51] Parola A., Pini D., Reatto L. The smooth cut-off hierarchical reference theory of fluids // Molecular Physics. - 2009. - Vol. 107, no. 4-6. - P. 503-522. - cited By 22. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-68249152281&doi= 10.1080%2f00268970902873547&partnerID=40&md5= c4740b4aa268fa6dfaedf45d2ae91eb1.
- [52] Blum L., Arias M. Structure of multi-component/multi-Yukawa mixtures // Journal of Physics Condensed Matter. – 2006. – Vol. 18, no. 36. – P. S2437-S2449. –

cited By 4. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-33748903880&doi=10.1088% 2f0953-8984%2f18%2f36%2fS16&partnerID=40&md5= 1b48000d3094f697b84f798554e197c1.

- [53] Schöll-Paschinger E., Gutlederer E., Kahl G. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures // Journal of Molecular Liquids. – 2004. – Vol. 112, no. 1-2. – P. 5-11. – cited By 12. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-1842812769&doi=10. 1016%2fj.molliq.2003.11.003&partnerID=40&md5= 3861c9a1f0e35ef958b73e5622cd4f2d.
- [54] Kahl G., Schöll-Paschinger E., Stell G. Phase transitions and critical behaviour of simple fluids and their mixtures // Journal of Physics Condensed Matter. – 2002. – Vol. 14, no. 40 SPEC. – P. 9153-9169. – cited By 27. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-0037078471&doi=10.1088% 2f0953-8984%2f14%2f40%2f309&partnerID=40&md5= c13a7c1afec2c9fcf36c7e5a79c8bb7b.
- [55] Blum L., Arias M. Thermodynamics of the soft and extended soft mean spherical model // Molecular Physics. - 2006. - Vol. 104, no. 22-24. - P. 3801-3808. - cited By 3. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-34547739001&doi= 10.1080%2f00268970600982103&partnerID=40&md5= 136fbf5f0bff4eb580550f0bae975723.
- [56] Martynov GA, Sarkisov GN, Vompe AG. New closure for the Ornstein-Zernike equation // JOURNAL OF CHEMICAL PHYSICS. – 1999. – FEB 22. – Vol. 110, no. 8. – P. 3961– 3969.
- [57] Kunor Tapas R., Taraphder Srabani. Bridge functions near the liquid-vapor coexistence curve in binary Lennard-Jones mixtures // PHYSICAL REVIEW E. – 2006. – JUL. – Vol. 74, no. 1, 1.
- [58] Pfund D.M., Lee L.L., Cochran H.D. Chemical potentials from integral equations using scaled particle theory.

II. Testing and applications // The Journal of Chemical Physics. - 1991. - Vol. 94, no. 4. - P. 3114-3131. - cited By 9. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041019719&partnerID=40& md5=f219dbe08f190a9531defa4a53dbcc95.

- [59] Kunor TR, Taraphder S. Molecular dynamics study of the density and temperature dependence of bridge functions in normal and supercritical Lennard-Jones fluids // PHYSICAL REVIEW E. – 2005. – SEP. – Vol. 72, no. 3, 1.
- [60] Pfund D.M., Lee L.L., Cochran H.D. Chemical potentials from integral equations using scaled particle theory. I. Theory // The Journal of Chemical Physics. – 1991. – Vol. 94, no. 4. – P. 3107-3113. – cited By 11. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0347067628&partnerID=40&md5= 170ee809b288a646549eb0af20ced7fe.
- [61] Zerah G., Hansen J.-P. Self-consistent integral equations for fluid pair distribution functions: Another attempt // The Journal of Chemical Physics. - 1985. -Vol. 84, no. 4. - P. 2336-2343. - cited By 282. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-36549097429&partnerID=40&md5= 5dd766d7be4cd3d46d4233fcbcd9e025.
- [62] Pellicane G., Caccamo C. A thermodynamic self-consistent theory of asymmetric hard-core Yukawa mixtures // Journal of Physics Condensed Matter. - 2016. - Vol. 28, no. 41. - cited By 0. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-84988423924&doi=10. 1088%2f0953-8984%2f28%2f41%2f414009&partnerID= 40&md5=0ec5a0083b386770cc359de4f4c78574.
- [63] Phase stability of binary non-additive hard-sphere mixtures: A self-consistent integral equation study / E. Lomba, M. Alvarez, L.L. Lee, N.G. Almarza // Journal of Chemical Physics. – 1996. -Vol. cited 104, no. 11. – P. 4180-4188. -Bv 62. https://www.scopus.com/inward/record. URL: uri?eid=2-s2.0-0001563083&partnerID=40&md5= cecdb2db31af6a8e8dc31b0448fec071.

- [64] VOMPE AG, MARTYNOV GA. THE BRIDGE FUNCTION EXPANSION AND THE SELF-CONSISTENCY PROBLEM OF THE ORNSTEIN-ZERNIKE EQUATION SOLUTION // JOURNAL OF CHEMICAL PHYSICS. – 1994. – APR 1. – Vol. 100, no. 7. – P. 5249–5258.
- [65] MARTYNOV GA, VOMPE AG. DIFFERENTIAL CONDITION OF THERMODYNAMIC CONSISTENCY AS A CLOSURE FOR THE ORNSTEIN-ZERNIKE EQUATION // PHYSICAL REVIEW E. – 1993. – FEB. – Vol. 47, no. 2. – P. 1012–1017.
- [66] Lee L.L., Ghonasgi D., Lomba E. The fluid structures for soft-sphere potentials via the zero-separation theorems on molecular distribution functions // Journal of Chemical Physics. - 1996. - Vol. 104, no. 20. - P. 8058-8067. cited By 40. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-0001731949&partnerID=40& md5=2a847080e71174eba8f4333068ad2527.
- [67] Lee L.L. An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation // The Journal of Chemical Physics. – 1995. – Vol. 103, no. 21. – P. 9388-9396. – cited By 59. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-36448998855&partnerID=40&md5= fe2305421f80fede115981e7de34171f.
- [68] Wilson D.S., Lee L.L. Chemical potentials and phase equilibria of Lennard-Jones mixtures: A selfconsistent integral equation approach // Journal Vol. 123, no. 4.of Chemical Physics. -2005. – cited Bv 6. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-23844437989& doi=10.1063%2f1.1961399&partnerID=40&md5= c49a30088faaed4f26dfae6ccd5bf6d8.
- [69] Lee L.L. The potential distribution-based closures to the integral equations for liquid structure: The Lennard-Jones fluid // Journal of Chemical Physics.— 1997.— Vol. 107, no. 18.— P. 7360-7370.— cited By 30. URL: https://www.scopus.com/inward/record.

uri?eid=2-s2.0-0000995875&partnerID=40&md5= 70a7c414b88519f2761982864d436a29.

- [70] Lee L.L., Malijevsky A. Structures and properties of hard sphere mixtures based on a self-consistent integral equation // Journal of Chemical Physics. - 2001. - Vol. 114, no. 16. - P. 7109-7117. - cited By 13. URL: https: //www.scopus.com/inward/record.uri?eid=2-s2. 0-0035932740&doi=10.1063%2f1.1359182&partnerID= 40&md5=a4da0ced69d7cd8274121a29e81d826c.
- [71] Lee L.L., Pellicane G. Towards composite spheres as building blocks for structured molecules // Journal of Physics Condensed Matter. - 2016. - Vol. 28, no. 41. cited By 0. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-84988362637&doi=10.1088% 2f0953-8984%2f28%2f41%2f414008&partnerID=40&md5= d467cdfb65f6987743cf014c1e3483d0.
- [72] Bomont JM, Bretonnet JL. A new approximate bridge function for pure fluids // MOLECULAR PHYSICS. – 2003. – NOV 20. – Vol. 101, no. 22. – P. 3249-3261.
- [73] Fried Laurence E., Howard W. Michael, Souers P. Clark. EXP6: A New Equation of State Library for High Pressure Thermochemistry. — URL: http://www.intdetsymp. org/detsymp2002/PaperSubmit/FinalManuscript/pdf/ Fried-228.pdf.
- [74] Ree F.H. Simple mixing rule for mixtures with exp-6 interactions // The Journal of Chemical Physics. – 1982. – Vol. 78, no. 1. – P. 409-415. – cited By 35. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-36749117491&partnerID=40&md5= 6e359289e7f263362fd68e395b7ceefc.
- [75] SMITH WR. PERTURBATION-THEORY AND ONE-FLUID CORRESPONDING STATES THEORIES FOR FLUID MIXTURES // CANADIAN JOURNAL OF CHEMICAL ENGINEERING. – 1972. – Vol. 50, no. 2. – P. 271-&.
- [76] Ould-Kaddour F., Pastore G. How reliable is the hmsa integral equation for the pair structure of

supercooled and amorphous mixtures? // Molecular Physics. - 1994. - Vol. 81, no. 4. - P. 1011-1016. - cited By 7. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-0001677398&doi= 10.1080%2f00268979400100671&partnerID=40&md5= 2729bdfb777dc5396bd7fb8e5528ec46.

- [77] Kang Hong Seok, Ree Francis H. Perturbative hypernetted-chain equation for mixtures: Applications to Coulomb plasma and H₂ + H mixtures // Phys. Rev. E. – 1998. – May. – Vol. 57. – P. 5988-5992. – URL: https: //link.aps.org/doi/10.1103/PhysRevE.57.5988.
- [78] Kiran E., Sengers J.M.H.L. Supercritical Fluids: Fundamentals for Application. Nato Science Series E.. – Springer Netherlands, 2013. – ISBN: 9789401582957. – URL: https://books.google.ru/books?id= auPsCAAAQBAJ.
- [79] Reed T.M., Gubins K.E. Applied statistical mechanics. Chemical engineering series. – New York : McGraw-Hill Inc., 1973. – ISBN: 9780070514959.
- [80] De Souza L.E.S., Deiters U.K. Non-ideality of the system NH3-H2-N2. Comparison of equation of state and simulation predictions with experimental data // Physical Chemistry Chemical Physics. – 1999. – Vol. 1, no. 17. – P. 4069-4074. – cited By 3. URL: https: //www.scopus.com/inward/record.uri?eid=2-s2. 0-0033190355&doi=10.1039%2fa904645c&partnerID= 40&md5=b66b055e659eaababc597c683b3fe7f8.
- [81] KONG CL, CHAKRABA.MR. COMBINING RULES FOR INTERMOLECULAR POTENTIAL PARAMETERS .3. APPLICATION TO EXP-6 POTENTIAL // JOURNAL OF PHYSICAL CHEMISTRY. – 1973. – Vol. 77, no. 22. – P. 2668–2670.
- [82] Labík S. An efficient gauss-newton-like method for the numerical solution of the ornstein-zernike integral equation for a class of fluid models // Journal of Computational Physics. – 1994. – Vol. 115, no. 1. – P. 12–21. – cited By 10. URL: https://www.scopus.

com/inward/record.uri?eid=2-s2.0-0001788596& doi=10.1006%2fjcph.1994.1174&partnerID=40&md5= 80dbec390f511385b55921d58b557c64.

- [83] Клинов А.В. Численный метод решения уравнения Орнштейна-Цернике для многокомпонентных система с длиннодействующими кулоновскими межмолекулярными взаимодействиями // Вестник Казанского Технологического Университета. – 2012. – Vol. 15, no. 19. – Р. 17-20.
- [84] Frigo Matteo, Johnson Steven G. The Design and Implementation of FFTW3 // Proceedings of the IEEE. – 2005. – Vol. 93, no. 2. – P. 216-231. – Special issue on "Program Generation, Optimization, and Platform Adaptation".
- [85] Johnson Steven G., Frigo Matteo. Implementing FFTs in Practice // Fast Fourier Transforms / Ed. by C. Sidney Burrus. — Rice University, Houston TX : Connexions, 2008. — September. — URL: http: //cnx.org/content/m16336/.
- [86] Frigo Matteo. A fast Fourier transform compiler // Proc. 1999 ACM SIGPLAN Conf. on Programming Language Design and Implementation. – Vol. 34. – ACM, 1999. – May. – P. 169–180.
- [87] Frigo Matteo, Johnson Steven G. FFTW: An adaptive software architecture for the FFT // Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing. – Vol. 3. – IEEE, 1998. – P. 1381-1384.
- [88] The Fastest Fourier Transform in the West : Rep. : MIT-LCS-TR-728 / Massachusetts Institute of Technology ; Executor: Matteo Frigo, Steven G. Johnson : 1997. – September.
- [89] Cache-oblivious algorithms / Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran // Proc. 40th Ann. Symp. on Foundations of Comp. Sci. (FOCS). – IEEE Comput. Soc., 1999. – P. 285-297.

- [90] Johnson Steven G., Frigo Matteo. A modified split-radix FFT with fewer arithmetic operations // IEEE Trans. Signal Processing. – 2007. – Vol. 55, no. 1. – P. 111–119.
- [91] Fried L.E., Howard W.M. An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen // Journal of Chemical Physics. - 1998. - Vol. 109, no. 17. - P. 7338-7348. - cited By 59. URL: https: //www.scopus.com/inward/record.uri?eid=2-s2. 0-0000381015&doi=10.1063%2f1.476520&partnerID= 40&md5=ae3e2a1ae7c112c443515fe4c19312b5.
- [92] Structural and optical properties of liquid CO2 for pressures up to 1 TPa / B. Boates, S. Hamel, E. Schwegler, S.A. Bonev // Journal of Chemical Physics. – 2011. – Vol. 134, no. 6. – cited By 16. URL: https: //www.scopus.com/inward/record.uri?eid=2-s2. 0-79951787853&doi=10.1063%2f1.3549593&partnerID= 40&md5=92cc659eb0095924dc7ba81a448c5f06.
- [93] Carbon dioxide shock and reshock equation of state data to 8 Mbar: Experiments and simulations / S. Root, K.R. Cochrane, J.H. Carpenter, T.R. Mattsson \parallel Physical Review B - Condensed Matter and Materials Physics. -2013. – Vol. 87, no. 22. – cited URL: https://www.scopus.com/inward/ Bv 12. record.uri?eid=2-s2.0-84878964280&doi=10. 1103%2fPhysRevB.87.224102&partnerID=40&md5= 37793ae079c50a0dac131161f5a66c37.
- [94] Wang C., Zhang P. Thermophysical properties of liquid carbon dioxide under shock compressions: Quantum molecular dynamic simulations // Journal of Chemical Physics. — 2010. — Vol. 133, no. 13. cited By 7. URL: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-79951785937& doi=10.1063%2f1.3491834&partnerID=40&md5= 5a015f0a5abf94675a3d573335aa3e9c.
- [95] Nellis W.J., Mitchell A.C. Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar) // The Journal of Chemical Physics. – 1980. –

Vol. 73, no. 12. – P. 6137-6145. – cited By 135. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0000680856&partnerID=40&md5= 8d191a8725b3e4bcf840fb28a5240bf7.

- [96] Equation-of-state, shock-temperature, and electricalconductivity data of dense fluid nitrogen in the dissociative region of the phase transition / W.J. Nellis, H.B. Radousky, D.C. Hamilton et al. // Journal of Chemical Physics. – The 1991. -P. 2244-2257. --Vol. 94, no. 3.– cited By 69. https://www.scopus.com/inward/record. URL: uri?eid=2-s2.0-36449006696&partnerID=40&md5= 3c1dc711a646884df922306887dc2d30.
- [97] Equation of state of shock-compressed liquids: Carbon dioxide and air / W.J. Nellis, A.C. Mitchell, F.H. Ree et al. // The Journal of Chemical Physics. – 1991. – Vol. 95, no. 7. – P. 5268-5272. – cited By 36. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-36449006280&partnerID=40&md5= 80406ba31de8de589bcc52d4d6e095e8.
- [98] Victorov S.B., Gubin S.A. A new accurate equation of state for fluid detonation products based on an improved version of the klrr perturbation theory. - 2006. - P. 1118-1127. cited By 2. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-84883315265&partnerID=40& md5=a7a9e3e2ad7dd0cdba9cf2aeae26c92f.
- [99] Gurvich L.V., Yorish V.S., Yungman V.S. IVTANTERMO: DATA BANK ON THE THERMODYNAMIC INDIVIDUAL PROPERTIES OF SUBSTANCES. -1985. -No. 58. – P. 12-13. -cited By 3. URL: https://www.scopus.com/inward/record. uri?eid=2-s2.0-0022149745&partnerID=40&md5= a67bbdcc63b87478d31a326675acc7d8.
- [100] James F. RANLUX: A Fortran implementation of the high-quality pseudorandom number generator of Lüscher // Computer Physics Communications. – 1994. – Vol. 79, no. 1. – P. 111-114. – cited

By 114. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-0028371842&doi=10.1016% 2f0010-4655%2894%2990233-X&partnerID=40&md5= 57b8268f74b50417da4bb8648eea94dd.

- [101] Equation of state calculations by fast computing machines / N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth et al. // The Journal of Chemical Physics. - 1953. - Vol. 21, no. 6. - P. 1087-1092. cited By 18789. URL: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-5744249209&partnerID=40& md5=c958d3f5fb8dde45ddc8e44e0e5b9cea.
- [102] Lüscher M. A portable high-quality random number generator for lattice field theory simulations // Computer Physics Communications. – 1994. – Vol. 79, no. 1. – P. 100–110.
- [103] Zubarev V. N., Telegin G. S. Impact compressibility of liquid nitrogen and solid carbon dioxide // Dokl. Akad. Nauk SSSR. – 1962. – Vol. 142, no. 2. – P. 309–312.
- [104] Marsh S.P. LASL Shock Hugoniot Data. Los Alamos Scientific Laboratory Series on Dynamic Material Properties, Vol 5. – University of California Press, 1980. – ISBN: 9780520040083. – URL: https: //books.google.ru/books?id=-PCJtmM91JcC.
- [105] Ross M., Ree F. H. Repulsive forces of simple molecules and mixtures at high density and temperature // The Journal of Chemical Physics. - 1980. - Vol. 73, no. 12. -P. 6146-6152. - https://doi.org/10.1063/1.440106.
- [106] Measurement of density, temperature, and electrical conductivity of a shock-compressed nonideal nitrogen plasma in the megabar pressure range / M. A. Mochalov, M. V. Zhernokletov, R. I. Il'kaev et al. // Journal of Experimental and Theoretical Physics. – 2010. – Jan. – Vol. 110, no. 1. – P. 67–80. – URL: https://doi.org/10. 1134/S1063776110010097.
- [107] Schott Dr. Gamy L. Shock-compressed carbon dioxide: Liquid measurements and comparisons

with selected models // High Pressure Research. – 1991. – Vol. 6, no. 3. – P. 187-200. – https://doi.org/10.1080/08957959108203209.

- [108] Wang Cong, Zhang Ping. Thermophysical properties of liquid carbon dioxide under shock compressions: Quantum molecular dynamic simulations // The Journal of Chemical Physics. – 2010. – Vol. 133, no. 13. – P. 134503. – https://doi.org/10.1063/1.3491834.
- [109] Seitz JC, Blencoe JG, Bodnar RJ. Volumetric properties for {x(1)CO(2)+x(2)CH(4)+(1-x(1)-x(2))N-2} at the pressures (19.94, 39.94, 59.93, and 99.93) MPa and temperatures (323.15, 373.15, 473.15, and 573.15) K // JOURNAL OF CHEMICAL THERMODYNAMICS. 1996. MAY. Vol. 28, no. 5. P. 539–550.
- [110] Kazarnovkiy Ya.S., Simonov G.B., Aristov G.Ye. Compressibility of nitrogen-hydrogen-ammonia mixtures at high pressures and temperatures // Zhurnal fizicheskoy khimii. – 1940. – Vol. 14, no. 5-6. – P. 774–781.
- [111] Ree Francis H. A statistical mechanical theory of chemically reacting multiphase mixtures: Application to the detonation properties of PETN // The Journal of Chemical Physics. – 1984. – Vol. 81, no. 3. – P. 1251– 1263. – https://doi.org/10.1063/1.447811.
- [112] Губин С.А., Одинцов В.В., Пепекин В.И. Термодинамические расчеты сложных химических систем. — Московский инженерно-физический институт, 1987.
- [113] Nichols III A.L., Ree F.H. CHEQ 2.0 User's Manual. Manuscript No. UCRL-MA-106754. – LLNL, Livermore, CA., 1990.
- [114] Modular software for modelling the ideal detonation of explosives / T.L. Freeman, I. Gladwell, M. Braithwaite et al. // Math. Engng. Ind. – 1991. – Vol. 3, no. 2. – P. 97-109.

- [115] Turkel M.-L, Charlet F. Carbon in Detonation Products. A "Three-Phase" Modelisation. – 1995. – 05. – Vol. 05. – P. 407-416.
- [116] Evaluation of various theoretical equations of state used in calculation of detonation properties / F. Charlet, M.-L. Turkel, J.-F. Danel, L. Kazandjian // Journal of Applied Physics. – 1998. – Vol. 84, no. 8. – P. 4227-4238. – https://doi.org/10.1063/1.368640.
- [117] Fried L.E., Howard W.M., Souers P.C. Cheetah 2.0 User's Manual. Manuscript No. UCRL-MA-117541, Rev. 5. – LLNL, Livermore, CA. 94550, 1998.
- [118] Kirkwood John G. Statistical Mechanics of Fluid Mixtures // The Journal of Chemical Physics. – 1935. – Vol. 3, no. 5. – P. 300–313. – https://doi.org/10.1063/1.1749657.
- [119] Choudhury Niharendu, Ghosh Swapan K. Integral equation theory of Lennard-Jones fluids: A modified Verlet bridge function approach // The Journal of Chemical Physics. – 2002. – Vol. 116, no. 19. – P. 8517-8522. – http://aip.scitation.org/doi/pdf/10.1063/1.1467894.
- [120] Chase M.W. NIST-JANAF Thermochemical Tables, 4th Edition. Journal of physical and chemical reference data. — American Institute of Physics, 1998. — ISBN: 1563968312 9781563968310 1563968193 9781563968198 1563968207 9781563968204. — URL: http://kinetics.nist.gov/janaf/.
- [121] Медведев А.Б. О НАЛИЧИИ СОСТОЯНИЙ С ОТРИЦАТЕЛЬНЫМ КОЭФФИЦИЕНТОМ ГРЮНАЙЗЕНА В ПЕРЕСЖАТЫХ ПРОДУКТАХ ВЗРЫВА // Физика горения и взрыва. – 2014. – Vol. 50, no. 4. – Р. 102-109.
- [122] Dick R. D. Shock compression data for liquids. III. Substituted methane compounds, ethylene glycol, glycerol, and ammonia // The Journal of Chemical Physics. – 1981. – Vol. 74, no. 7. – P. 4053-4061. – https://doi.org/10.1063/1.441586.

- [123] Mitchell A. C., Nellis W. J. Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range // The Journal of Chemical Physics. – 1982. – Vol. 76, no. 12. – P. 6273-6281. – https://doi.org/10.1063/1.443030.
- [124] Li Dafang, Zhang Ping, Yan Jun. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa // The Journal of Chemical Physics. – 2013. – Vol. 139, no. 13. – P. 134505. – https://doi.org/10.1063/1.4823744.