НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ФИЗИКО-ТЕХНИЧЕСКИХ ПРОБЛЕМ ЭНЕРГЕТИКИ (НИЦ-2)

СВОДНАЯ ИНФОРМАЦИЯ О НИЦ-2 (2014 г.)

		<u> </u>
Кол-во сотрудников в штате	228	100%
Научных сотрудников, в т.ч.	130	60% / 100%
- с ученой степенью в т.ч.	101	44% / 78%
- докторов наук	30	13% / 23%
- кандидатов наук	71	31% / 55%
- без степени	29	13% / 22%
Молодых в штате, кроме того	21	9% / 16%
- студентов (сверх штата)	25	11% / 19%
- аспирантов (сверх штата)	14	6% / 11%
Итого молодых (< 35 лет)	60	26% / 46%
, , ,		

В 2014 году:

- поступили в аспирантуру 2 чел.,
- закончили аспирантуру 2 чел (*u остались в Институте*),
- защитился 1 чел.
- уволились 16 чел. (5 н.с., 9 ИТР, 2 рабочих);
- приняты на работу: 13 чел. (6 н.с., 7 ИТР)

Средний возраст сотрудников НИЦ-2 - **52,0** года

(B OUBT PAH -52,6).

ФИНАНСЫ НИЦ-2 (2014 г.)

Доходы НИЦ-2, млн руб. (без сторонних работ), в том числе:	240,2	100%
Базовый бюджет	101,0	42%
Минобрнауки (6 соглашений)	72,2	30%
Договора (21 шт.)	31,4	13%
РФФИ (28 проектов)	13,8	6%
РНФ (1 соглашение)	10,0	4%
Программы РАН (6 През., 4 Отд.)	8,7	4%
Сколково (2 контракта)	3,1	1%

26 сотрудников были руководителями28 проектов РФФИ

12 сотрудников были руководителями проектов в 10 Программах РАН

Средняя зарплата по НИЦ-2 — 47,0 т.р./мес., в т.ч. из бюдж. - 28,8 т.р./мес. У научных сотрудников — 57,9 т.р./мес., в т.ч. из бюдж. – 30 т.р./мес.

поздравляем!

Победителей конкурса года на получение стипендии Президента РФ для молодых ученых и аспирантов

по направлению

«Энергоэффективность и энергосбережение, в том числе вопросы разработки новых видов топлива»

Клементьеву Ирину Борисовну Лисину Ирину Игоревну

ПОЗДРАВЛЯЕМ!

с награждением

Премией

для молодых ученых Европейской Академии за работу

Молекулярно-динамическое моделирование межфазных границ и гетерогенных процессов для задач электрохимии»

Кисленко Сергея Александровича

ПОЗДРАВЛЯЕМ!

с присуждением медали Российской академии наук для молодых ученых по итогам конкурса 2013 года

Моралева Ивана Александровича

Савельева Андрея Сергеевича Терешонка Дмитрия Викторовича

за работу

«Экспериментальное и расчетно-теоретическое исследование управления аэродинамическим потоком с помощью газоразрядной плазмы»

СОВЕТ ПО ГРАНТАМ ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ для полдержки молодых российских ученых и ведущих научных шко

поздравляем!

Победителей конкурса 2014 года по государственной поддержке молодых российских ученых-кандидатов наук

Киверина Алексея Дмитриевича «Разработка новых подходов к изучению и моделированию процессов воспламенения и турбулентного горения в камерах сгорания».

Зеленера Бориса Борисовича «Создание диагностики процессов самоорганизации ридберговского вещества в магнитном поле ».

Фирсова Александра Александровича «Объемное воспламенение и поддержание сверхзвукового горения топлива при помощи электрического разряда в магнитном поле».

НАУЧНЫЕ ПУБЛИКАЦИИ СОТРУДНИКОВ НИЦ-2 В 2014 ГОДУ

Всего: около 400 или более 3 на 1 научного сотрудника, в том числе:

- 6 монографий и учебных пособий,
- 91 статья в реферируемых журналах ВАК (**0,7 на 1 н.с.** мало!),
- 21 статья в нереферируемых журналах,
- 269 докладов на конференциях,
- 11 заявок на изобретения,
- 9 патентов получено.

Средний ПРНД: по НИЦ-2 – 48 баллов, в т.ч. по Отделению 2.1 – 35 б. по Отделению 2.2 – 74 б.

По публикациям в журналах, включенных в системы международного цитирования SCOPUS и WoS, надежной статистики, к сожалению, нет. Надо систематизировать сбор информации.

ПРОБЛЕМА ДЛЯ СПЕЦИАЛИСТОВ-ЭНЕРГЕТИКОВ:

В России только 1 профильный журнал «Теплоэнергетика» включен в SCOPUS. Журнал «ТВТ» – не всегда подходит для публикаций в области энергетики.

Отдел проблем теплоэнергетики (рук. Косой Александр Семенович)

ОТДЕЛЕНИЕ ЭНЕРГЕТИКИ И ЭНЕРГОТЕХНОЛОГИЙ

Реорганизация – август 2014 г. Влились ведущие российские специалисты-разработчики газотурбинного оборудования

Основные направления разработок:

- разработка ГТУ для крупной и распределенной энергетики с опорой на передовые отечественные исследования и разработки по ключевым компонентам и схемным решениям. Попытки создания отечественного проектно-конструкторского центра (Центра компетенции) в кооперации с другими организациями в рамках поручения В.В. Путина по вопросу разработки программы импортозамещения оборудования энергетического машиностроения в области газотурбинных технологий (А.С. Косой, В.М. Батенин).
- разработка отечественного высокоэффективного микрогазотурбинного электрогенерирующего модуля мощностью 30 кВт (проект в стадии подготовки с индустриальными партнерами ОАО «НПО ЛЭМЗ» и ООО «БПЦ Инжиниринг» в интересах Программы оснащения границ России дежурными РЛС и РЛК). (А.С. Косой)
- разработка новых и нетрадиционных схемных подходов, методик ранжирования энергетических и энерготехнологических технологий по технико-экономическим показателям и предложений по обновлению отечественной энергетики (В.М. Масленников) дополнительное финансирование лишь по Программе РАН-21.

Основная проблема: сложность привлечения финансирования для реализации дорогостоящих пилотных проектов.

<u>Примеры новых практически важных результатов</u> <u>прикладных исследований отдела в 2014 г.</u>

Разработана принципиально новая технология ликвационной плавки переработки редкометального - редкоземельного сырья применительно к ниобий-редкоземельному месторождению TOMTOP (д.т.н. Л.М. Делицын) Допфинансирование – пока лишь Программа РАН-42

Разработан новый стабильный медьсодержащий катализатор очистки водометанольной фракции от метанола при переработке природного и попутного газов (к.х.н. И.И.Лищинер, к.х.н. О.В.Малова, к.х.н. А.Л.Тарасов) Допфинансирование — пока лишь небольшие хоздоговора

Изменение прочности промышленных катализаторов НТК-4, СНМ-У и разработанного КОМ в процессе испытаний

6 | Figure 1 | Figure 2 | Figure 3 | Figure

■ исх 🖾 п/и

Отдел проблем теплоэнергетики (рук. Косой Александр Семенович)

ОТДЕЛЕНИЕ ЭНЕРГЕТИКИ И ЭНЕРГОТЕХНОЛОГИЙ

Фундаментально-прикладные исследования (д.т.н. Ю.А. Зейгарник)

- Исследование процессов теплообмена при кипении жидкости (прежде всего, недогретой) на поверхностях с различной мезоструктурной морфологией. **Приложения:** обеспечение сверхвысоких коэффициентов теплопередачи в ракетной, лазерной технике и т.п..
- Разработка технологии и исследование процессов мелкодисперсного распыла жидкости (в т.ч. распыла перегретой жидкости). **Приложения:** энергетика (компрессоры, STIG), МЧС новые подходы в пожарном деле
- Исследование процессов теплообмена при переменных теплофизических свойства и больших градиентах температуры обобщение накопленных экспериментальных результатов, имеющих большое научно-практическое значение **Приложения**: реакторы при сверхкритических параметрах и др.
- Разработка кодов для расчета двухфазных сред применительно к атомным реакторам и жидкометаллическим реакторам «Брест» (совместно с ИБРАЭ, к.ф-м.н. В.М. Алипченков)
- Исследование процессов переходного и нестационарного кипения (к.т.н. В.М. Жуков, м.н.с. А.М. Агальцов)
- Исследования в области радиационного теплообмена (д.т.н. Л.А. Домбровский). Пример нового направления исследований (совместно с австралийскими учеными): Исследование влияния импульсного лазерного излучения на гипертермию опухолей

Допфинансирование исследований:

пока лишь РФФИ (5 проектов), Программа РАН-40

Метод косвенного нагрева (удушение) опухоли

Отдел теплофизических проблем ядерной ЭНЕРГЕТИКИ (д.т.н. Свиридов Валентин Георгиевич)

ОТДЕЛЕНИЕ ЭНЕРГЕТИКИ И **ЭНЕРГОТЕХНОЛОГИЙ**

Отдел образован в мае 2014 года с приглашением ведущих специалистов кафедры теплофизики МЭИ

ЦЕЛЬ: Создание в ОИВТ РАН уникальной экспериментальной базы (ртутный МГД стенд) для проведения исследований в интересах перспективной атомной энергетики, металлургии и т.п.

Под создание стенда выделен корпус, который активно ремонтируется и адаптируется под экспериментальные нужды.

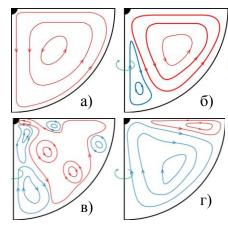
Параллельно ведутся исследования с использованием имеющейся в ОИВТ РАН и МЭИ экспериментальной базы.

Несмотря на задержку обещанного финансирования Росатомом, включение исследований в грант РНФ дает надежды, что начатые

масштабные работы по стенду будут успешно продолжены.

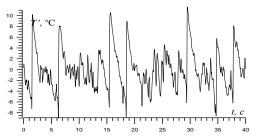
Примеры новых результатов исследований отдела в 2014 г.

- Исследование влияние магнитных полей на гидродинамическую структуру течений в электроплавильных агрегатах (В.Г. Свиридов, Ю.П. Ивочкин, И.О. Тепляков)


Методами физического и численного моделирования исследовано влияние внешних, в том числе импульсных, магнитных полей на течения, инициированные в жидком металле неоднородным электрическим током. (т.н. электровихревые течения).

Продемонстрирована эффективность применения импульсных МП для интенсификации тепло-массообменных приэлектродных процессов при электрошлаковом переплаве металлов.

Применение: Электрошлаковая сварка, электродуговая и электрошлаковая переплавка металлов, в том числе титана.


- Исследование МГД и и теплообмена при течении жидкого металла в макете канала испытательного модуля бланкета ИМБ (В.Г. Свиридов, Н.Г. Разуванов)

Выполнены эксперименты по измерению полей температуры, распределениям температуры стенки, статистических характеристик пульсаций температуры, профилей скорости, коэффициентов гидравлического сопротивления в вертикальном канале прямоугольного сечения в компланарном магнитном поле при опускном течении ртути. Исследуются режимы возникновения пульсаций температуры аномальной амплитуды, учтет которых может быть критически важным при создании реакторов на ЖМ.

Структура течения в зависимости от внешнего магнитного поля: (a) B=0; (б) B $<10^{-4}$ Tл; (в) B= 2×10^{-4} ;

 (Γ) - B>10⁻³; I = 400A

Отдел распределенных энергетических систем

(д.т.н. Зайченко Виктор Михайлович)

Лаборатория распределенной генерации

(д.т.н. Зайченко В.М.)

Допфинансирование:

3 соглашения с Минобрнауки 2 проекта в Программах РАН 2 проекта РФФИ Лаборатория водородных энергетических технологий (к.т.н. В.И. Борзенко)

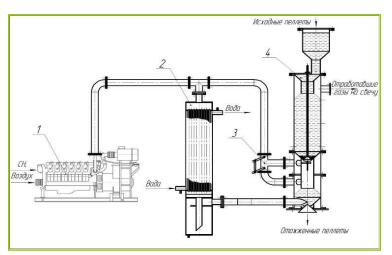
Допфинансирование:

2 соглашения с Минобрнауки 2 проекта в Программах РАН 3 проекта РФФИ 2 контракта (Сколково) Лаборатория возобновляемых источников энергии (к.т.н. Фрид С.Е.)

Допфинансирование:

1 соглашение с Минобрнауки 2 проекта в Программах РАН 3 проекта РФФИ 3 контракта

ОТДЕЛЕНИЕ ЭНЕРГЕТИКИ И ЭНЕРГОТЕХНОЛОГИЙ

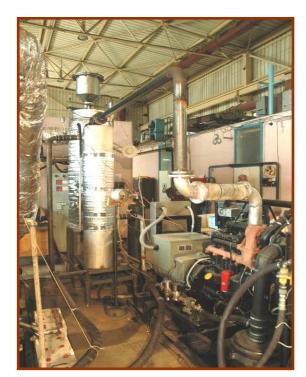

Научная группа системных исследований в энергетике

> (д.т.н. В.В. Бушуев) с ноября 2014 г.

чл.-корр РАН В.М. Батенин – координатор взаимодействия НГ со структурными подразделениями ОИВТ РАН.

Примеры новых результатов исследований отдела в 2014 г.

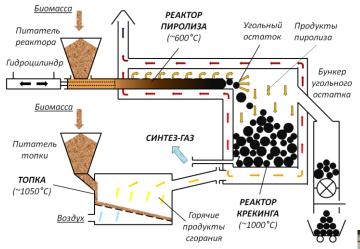
Разработан энерготехнологический комплекс для кондиционирования (торрефикации) гранулированного биотоплива (пеллет) (Зайченко В.М.)



- 1 газопоршневая энергоустановка,
- 2 теплообменник, 3 смеситель,
- 4 реактор отжига

В процессе торрефикации:

- улучшаются гидрофобные свойства пеллет;
- увеличивается удельная теплота сгорания.


<u>Стадия разработки:</u> создание опытно-промышленной установки на заводе «Продмаш» (Ростов-на-Дону)

Стендовая установка по торрефикации биогранул выхлопными газами ДВС

Разработка промышленной технология конверсии биомассы в энергетический газ

(рук. д.т.н. Зайченко В.М.)

Создана автономная когенерационная энергоустановка в составе реактора пиролитической конверсии биомассы и энергогенерирующего агрегата на базе газопоршневого двигателя Разработана (ГПД). система управления, обеспечивающая синхронизацию работы электрогенератора с Разработана распределительной сетью. техническая документация для организации промышленного производства и мини-ТЭЦ на базе электростанций газопоршневого двигателя, для использования в системах распределённой генерации.

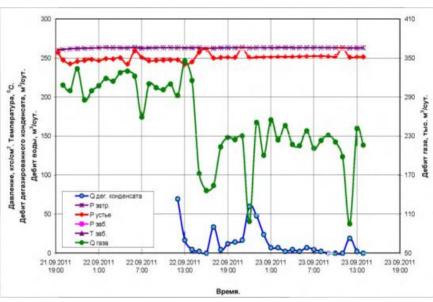
<u>Реактор пиролитической конверсии</u> <u>биомассы:</u>

- расход исходного сырья 50 кг/ч;
- коэффициент энергетической конверсии исходного сырья в газ 79%;
- объем получаемого газа 65 м³/ч; теплота сгорания 11,6 МДж/м³

■ H2 ■ CO □ CO2 ■ CH4 ■ Другие

<u>ГПД АГ-75. Мощность 75 кВт</u> [

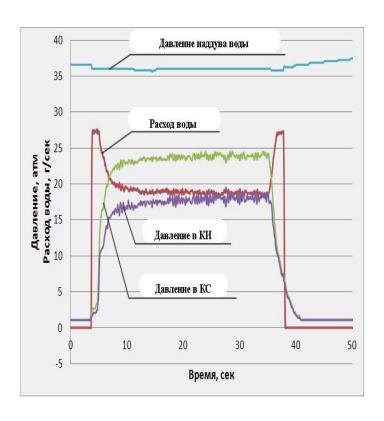
Исследования аномальной фильтрации двухфазных смесей в пористом пространстве (рук. Зайченко В.М.)


В результате экспериментально - теоретических исследований показано, что фильтрация в пористой среде углеводородов при наличии фазовых переходов является колебательным процессом. Учет волновой природы фильтрации позволяет увеличить дебит газоконденсатных месторождений на ~ 30%.

Общий вид модернизированного стенда «Пласт»

- 1-фильтрационный участок;
- 2 «волновой» участок;
- 3- генератор ударных волн; 4-нагнетательный насос

Модельная смесь метанпентан


Исследование скважины на Уренгойском газоконденсатном месторождении

Модернизации стенда «Пласт» включена в программу проекта РНФ, Заявка ОИВТ РАН на разработку научных основ новых методов интенсификации добычи газоконденсата включена в проект Программы НИР ОАО Газпром на 2015-2018 г.г. (в настоящий момент на утверждении у руководства Газпрома)

Исследование процессов генерации пара, разработка и создание водородного парогенератора киловаттного класса мощности

(Рук. к.т.н. Счастливцев А.И.)

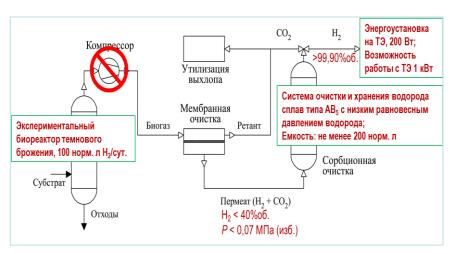
- Завершен цикл фундаментальных исследований гидродинамических и тепловых процессов в водородных парогенераторах киловаттного класса мощности.
- Разработаны, созданы и испытаны опытные образцы тепловой мощностью до 200 кВт для водородных систем аккумулирования энергии.
- Разработана автоматическая система управления водородно-кислородным парогенератором;
- Выполнен термодинамический расчет высокотемпературной паровой турбины тепловой мощностью до 50 кВт.

<u>Технические характеристики водородно-</u> кислородного парогенератора:

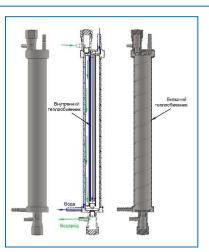
Максимальная тепловая мощность — до 200 кВт; Минимальная тепловая мощность, — до 15 кВт; Время выхода на номинальный режим — до 7 с; — до 1600 К; Макс. давление генерируемого пара, — до 5 МПа; Полнота сгорания водорода, — 99,8 %.

Источник допфинансирования Программа ОЭММПУ)

Разработка методов металлогидридной очистки и хранения водорода, полученного биологическим путем, для использования в топливных элементах


Различные компоненты исследования выполняются при допфинансировании из источников: Соглашение о предоставлении субсидии МОН «Разработка методов металлогидридной очистки и хранения водорода, полученного биологическим путем, для использования в топливных элементах», руководитель к.ф-м.н. Дуников Д.О.

Проект РФФИ «Фундаментальные исследования процессов получения и очистки биоводорода для использования в топливных элементах», руководитель к.т.н. Борзенко В.И. НИЦ-2, совместно с Университетом Фенг Чиа (Тайвань)

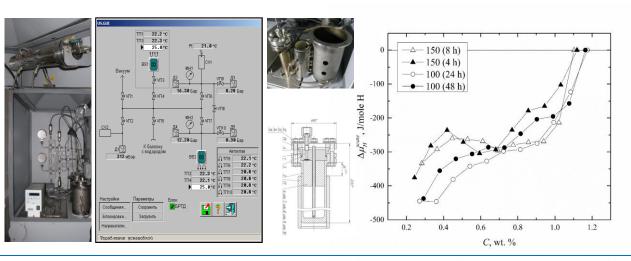

Договор ОИВТ РАН-Сколтех «Разработка и создание экспериментального образца энергоустановки, использующей в качестве топлива биоводород», руководитель к.т.н. Борзенко В.И.

Проект РФФИ «Исследования процессов тепломассопереноса в засыпках водородопоглощающих материалов в

устройствах металлогидридной очистки биоводорода», руководитель к.ф-м.н. Дуников Д.О. Разработаны металлогидридные реакторы очистки биоводорода проточного типа РХО-8 и РХО-8И. Показано, что в бескризисных режимах возможно достижение интегральных и моментальных значений коэффициента извлечения водорода свыше 80-90%. Создана экспериментальная энергоустановка электрической мощностью 200 Вт на основе реакторов РХО-8 и твердополимерного топливного элемента НОРРЕСКЕ Н2 Power, использующая биоводород в качестве топлива.

Принципиальная схема разрабатываемой интегрированной системы очистки и хранения водорода

Реактор РХО-8


Энергоустановка H2 BioPower

Исследование особенностей сорбционных характеристик и теплофизических свойств мелкодисперсных водородпоглощающих материалов, определяемых масштабными эффектами, исследования процессов тепломассопереноса в металлогидридных засыпках

Проект РФФИ «Исследования процессов тепломассопереноса в засыпках водородопоглощающих материалов в устройствах металлогидридной очистки биоводорода», руководитель к.ф-м.н. Дуников Д.О.

Проект РФФИ «Исследование особенностей сорбционных характеристик и теплофизических свойств мелкодисперсных водородпоглощающих материалов, определяемых масштабными эффектами, в металлогидридных системах аккумулирования и очистки водорода», руководитель Борзенко В.И.

Договор ОИВТ РАН - Сколтех «Экспериментальные исследования процессов тепломассообмена при сорбции водорода гидридообразующими сплавами на основе LaNi₅», руководитель Борзенко В.И.

Изготовлены образцы перспективных интерметаллических соединений AB5-типа на основе LaNi5 для систем очистки и хранения водорода легированные церием, алюминием, оловом и марганцем, измерены изотермы десорбции водорода в интервале температур от 293 до 373 К, определены величины сорбционной емкости, значения равновесных давлений десорбции, значения энтропии и энтальпии реакции с водородом. Проведены исследования масштабного эффекта при изменении массы образца от 50 до 500 г. Для определения величины масштабного эффекта были рассчитаны значения изменения химического потенциала водорода в твердой фазе. Исследованные в ходе проведения работ интерметаллиды могут быть рекомендованы для создания металлогидридных систем хранения и очистки водорода. Разработана балансовая модель процессов тепло и массопереноса в металлогидридных реакторах проточного типа.

Разработка и создание экспериментального образца водородной системы резервного электроснабжения (рук. к.т.н. Борзенко В.И.)

Финансирование проекта: Соглашение о предоставлении субсидии МОН Индустриальный

партнер: ООО «ЦЭЭ Интеррао ЕЭС»

Цели прикладного научного исследования:

- разработка новых технических решений, обеспечивающих повышение надежности электропитания телекоммуникационного оборудования и снижение экологической нагрузки на природу за счет применения водородных технологий аккумулирования энергии;
- создание экспериментального образца водородной системы бесперебойного питания и аккумулирования энергии низкого давления;
- разработка новых технических решений, обеспечивающих время автономной работы экспериментального образца водородной системы бесперебойного питания и аккумулирования энергии не менее 10 ч для телекоммуникационного оборудования электрической мощностью от 10 кВт.

Результаты 1 этапа работ:

- Разработано техническое предложение на создание ВСРЭ.
- Изготовлены и испытаны лабораторные образцы водородопоглощающих материалов для создания металлогидридного реактора хранения водорода низкого давления РХН.
- Изготовлена и испытана экспериментальная партия интерметаллического соединения $LaNi_{4.8}Al_{0.2}$ в количестве 200 кг для использования в реакторе хранения водорода, проведены испытания по определению изотерм десорбции и определены термодинамические характеристики.

Система электропитания ретрансляционной станции сотовой связи

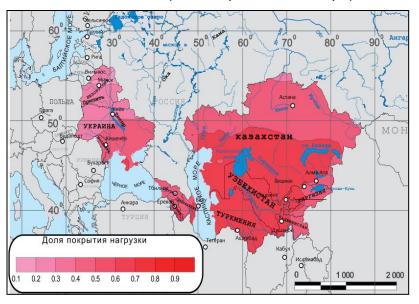
РАЗРАБОТКА И СОЗДАНИЕ ЭФФЕКТИВНЫХ СОЛНЕЧНЫХ ВОДОНАГРЕВАТЕЛЕЙ ПОЛНОСТЬЮ ИЗ ПОЛИМЕРНЫХ И КОМПОЗИТНЫХ МАТЕРИАЛОВ

(Рук. к.т.н. Фрид С.Е.)

Исключение использования конструкции установок традиционно применяемых цветных металлов и упрочненного стекла при сохранении высоких энергетических показателей позволило в 2-3 раза снизить удельный вес установок и в 1,5-2 раза стоимость ПО сравнению широко СНИЗИТЬ представленными на мировом рынке «традиционными» солнечными установками.

Разработка не имеет промышленных аналогов в мире, защищена патентом. Цель работы: освоению опытного производства объемом 5-20 тыс. шт. установок в год, которое планируется создать совместно с инжиниринговой компанией ООО «Политермо». (Работа выполняется по Соглашению о предоставлении субсидии с Минобрнауки №14.607.21.0036).

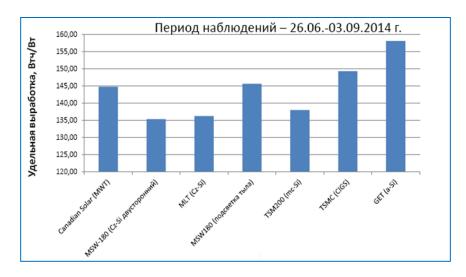
Экспериментальный образец СВУ



Макет опытного образца

Доля покрытия нагрузки на горячее водоснабжение (Россия, апрель – сентябрь)

Доля покрытия нагрузки на горячее водоснабжение (СНГ, апрель – сентябрь)



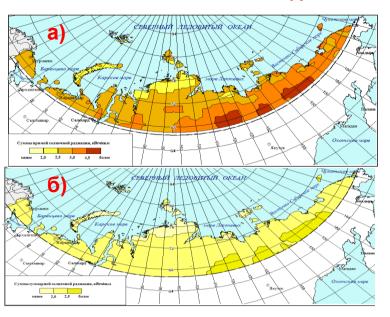
СТЕНД СРАВНИТЕЛЬНЫХ ИСПЫТАНИЙ ФОТОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ

Рук. Попель О.С., отв. исп. Тарсенко А.Б.

Стенд сравнительных испытаний фотоэлектрических модулей

- В ОИВТ РАН проводятся сравнительные испытания фотоэлектрических модулей в климатических условиях г. Москвы.
- Стенд укомплектован фотоэлектрическими модулями отечественных и зарубежных производителей, изготовленными по различным технологиям.
- Создание стенда позволяет получать и накапливать объективную информацию о выработке энергии модулями разных типов, а также дает представление об особенностях инсталляции тех или иных типов модулей, связанных с их механическими и электрофизическими параметрами.
- (Стенд создан в рамках Госконтракта с Минобрнауки России, дальнейшие испытания ведутся в рамках работ по соглашению с РНФ)

Сравниваемые модули:


Наименование	Canadian Solar CS 5A 210	Солнечный ветер MSW180	Mitsubishi MLT265	Телеком-СТВ TSM200	TSMC145	GET AT2
Мощность, Вт	210	180 (90)	265	200	145	115
Кпд,%	17,2	14,2	16	15,3	13	8
Темп коэфф. Мощности, %/К	-0,38	-0,41	-0,45	-0,35	-0,31	-0,25

Результаты:

- Показаны преимущества эксплуатации тонкопленочных модулей в климатических условиях г. Москвы;
- Разработаны решения по применению двусторонних модулей, позволяющие увеличить выработку на 15-20% в солнечные дни.

ИССЛЕДОВАНИЯ В ОБОСНОВАНИЕ РЕШЕНИЙ ДЛЯ АВТОНОМНЫХ ЭНЕРГОСИСТЕМ В АРКТИЧЕСКОЙ ЗОНЕ РФ

рук. Попель О.С., отв.исп. Фрид С.Е., Киселева С.В.

Распределение прямой солнечной радиации на нормальную поверхность (а) и суммарной солнечной радиации на горизонтальную поверхность (б)

Результаты:

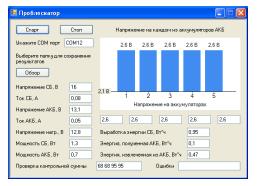
- Определены основные параметры исследуемой территории, впервые предприняты попытки систематизации и анализа графиков нагрузки типовых потребителей для данной территории.
- Выполнен анализ ресурсов ВИЭ в регионе. Показана перспективность использования солнечной энергии в летнее время. Проанализированы возможные источники данных и погрешности оценок.
- Прямыми климатическими испытаниями подтверждена работоспособность литий-ионных аккумуляторов с нанотитанатным анодом для работы в энергоустановках при температурах окружающей среды до -30°C без затрат энергии для подогрева контейнера с накопителем электрической энергии, что актуально для малых энергоустановок северных регионов.
- Проработан облик портативной энергоустановки двойного назначения для использования в северных регионах.

Внешний вид портативного источника питания ср. мощностью до 250 Вт, пиковой до 2 кВт, вес до 70 кг (справа — транспортировочное положение, слева — рабочее положение)

Работа ведется в рамках Программы Президиума РАН-8 (Арктика)

АВТОНОМНЫЕ ФОТОЭЛЕКТРИЧЕСКИЕ СВЕТОСИГНАЛЬНЫЕ УСТРОЙСТВА

рук. Попель О.С., отв.исп. Фрид С.Е., Тарасенко А.Б.



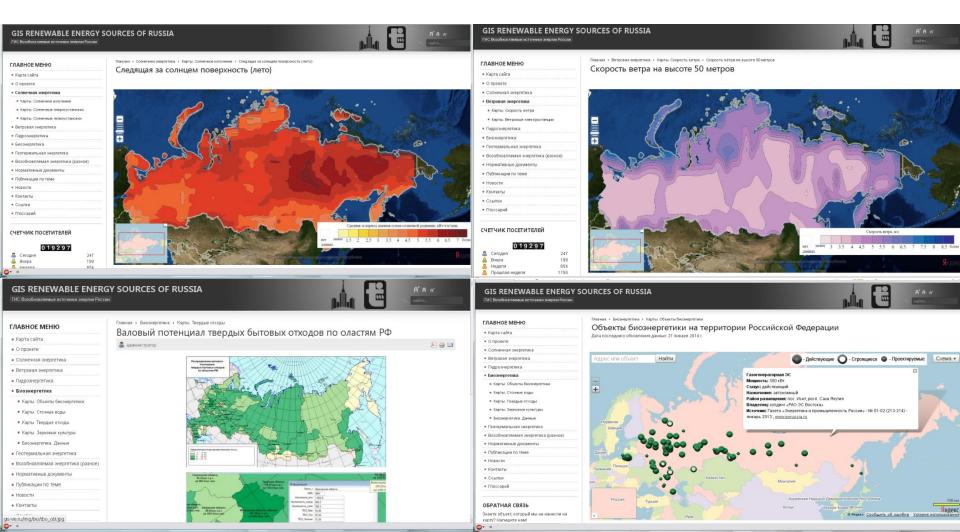
Экспериментальные образцы автономного светосигнального устройства мощностью 20 Вт с использованием литий-ионных и свинцово-кислотных аккумуляторов

Интерфейс программы мониторинга рабочих параметров автономных светосигнальных устройств.

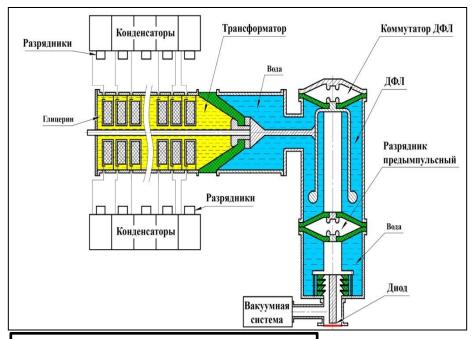
РЕЗУЛЬТАТЫ:

- Разработаны, изготовлены и испытаны образцы автономных фотоэлектрических светосигнальных устройств с высокой степенью гарантированности круглогодичной работы в климатических условиях Московского региона.
- Разработаны инженерная и динамическая модели устройств, обеспечивающие выбор оптимальной конфигурации и состава системы энергопитания с учетом реальных климатических условий предполагаемой эксплуатации автономных светосигнальных устройств и типов используемого оборудования (фотоэлектрические преобразователи, аккумуляторные батареи).
- •Разработаны дешевые и эффективные платы защиты аккумуляторов от перезаряда.
- •Реализация данного проекта позволяет перейти к продвижению разработанных устройств в различные сектора экономики (дорожное, речное и морское хозяйство, железнодорожный транспорт и др.), заинтересованные в использовании полностью автономных систем сигнализации и обеспечения безопасности. (Работа выполнена по госконтракту с Минобрнауки России, испытания устройств продолжаются в инициативном порядке)

Решенные научно-технические проблемы:


- Разработка решений по использованию в автономных светосигнальных устройствах современных накопителей электроэнергии (литий-ионных аккумуляторов);
- Повышение степени гарантированности работы устройства в результате корректного учета климатических и географических условий;
- Повышение устойчивости работы устройства в зимнее время.

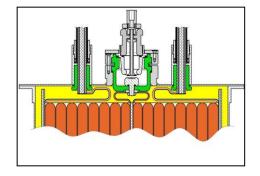
ГЕОИНФОРМАЦИОННАЯ СИСТЕМА (ГИС) «ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ РОССИИ»

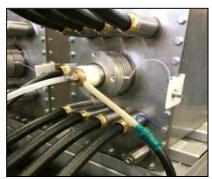

(О.С. Попель, С.В. Киселева, С.Е. Фрид)

Разработанная ОИВТ РАН совместно с Географическим факультетом МГУ им. М.В. Ломоносова ГИС «Возобновляемые источники энергии России» (www.gis-vie.ru) впервые через Интернет предоставляет потребителям из различных секторов экономики, науки и образования большой массив картографических данных о ресурсах различных видов возобновляемых ресурсов в регионах России, действующих и проектируемых объектах возобновляемой энергетики, научных, образовательных и производственных организациях, занимающихся исследованиями и разработками в данном секторе энергетики.

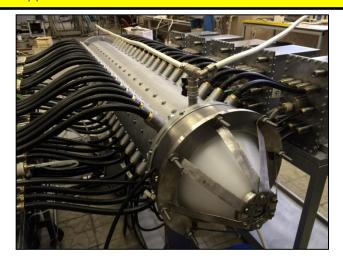
Отдел прикладной электрофизики (к.ф-м-н. Гавриков А.В.)

Параметры ЛИТ: U – 0,8 MB, I – 70 кA, t – 40-50 нс


Ускоритель включает в себя:


- первичный емкостной накопитель энергии в виде набора конденсаторно-коммутаторных сборок с рабочим напряжением 40 кВ,
- линейный импульсный трансформатор (ЛИТ) с выходным напряжением 0,8 МВ,
- заряжаемую от него за время 300 нс двойную формирующую линию с водяной изоляцией,
- электронный диод.

Сильноточный наносекундный ускоритель «Мир-М» на базе линейного импульсного трансформатора (ЛИТ)


Науч.рук. ак. Смирнов В.П., отв.исп. к.ф.-м.н. Гавриков А.В.

Разработаны, изготовлены, смонтированы и испытаны узлы сильноточного ускорителя «Мир-М». Разработаны и испытаны модули низкоиндуктивных (≤40 нГн) емкостных накопителей энергии с параметрами: U=40 кВ, C=2x0,35 мкФ

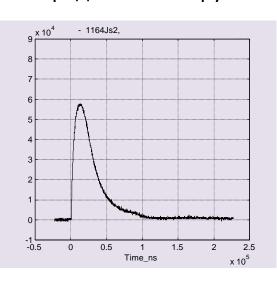
Проведены испытания системы питания ЛИТ

Отдел прикладной электрофизики (к.ф-м-н. Гавриков А.В.)

Мобильный испытательный комплекс генератор импульсного напряжения (МИК ГИН)

Науч.рук. ак. Смирнов В.П., отв.исп. к.ф.-м.н. Гавриков А.В.

Проведены испытания по молниезащите на песчаном грунте. Выполнена модернизация МИК ГИН (использование разрядников со стабилизацией коронным разрядом).


Экспедиция (карьер). Московская обл., Дмитровский р-он., с. Ильинское, октябрь – ноябрь 2014г.

Разрядный ток в грунте

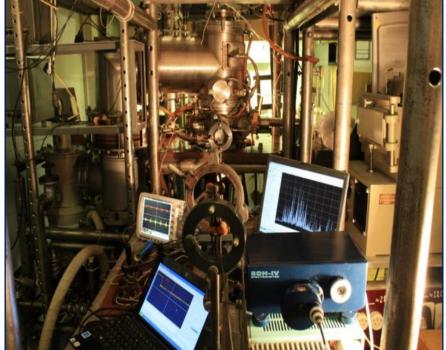
Модернизация разрядников МИК ГИН

До модернизации:

- Большой разброс срабатывания секций ГИН.
- Узкий диапазон управляемости ГИН.
- Быстрый износ электродов.

Результаты модернизации:

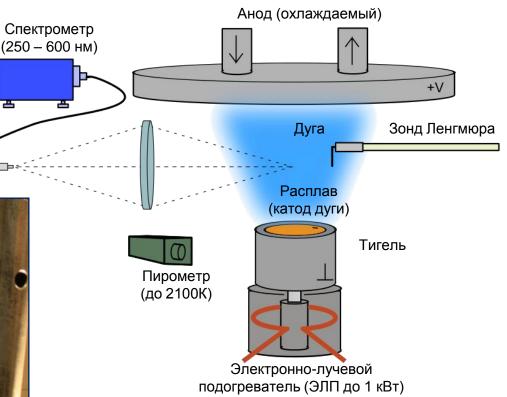
- Повышена стабильность работы разрядников ГИН.
- Увеличен ресурс работы.



Отдел прикладной электрофизики (к.ф-м-н. Гавриков А.В.)

Результат:

На гадолинии, моделирующем отработавшее ядерное топливо (ОЯТ), показана возможность однократной ионизации со степенью ионизации близкой к 100%


Экспериментальный стенд

Исследование вакуумно-дугового способа перевода вещества из конденсированного состояния в плазменное (плазменная сепарация веществ, моделирующих отработавшее ядерное топливо)

Науч.рук. академик Смирнов В.П., отв.исп. к.ф.-м.н. Гавриков А.В.

Схема эксперимента

Параметры эксперимента

Тип разряда – вакуумная дуга с диффузной катодной привязкой Напряжение дуги – ~5В
Ток дуги – 44 А
Модельное вещество – гадолиний

Средняя скорость испарения – 1,5–2,2 мг/с. Степень ионизации – более 90%

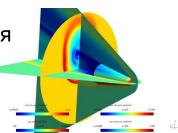
Фундаментальные исследования в области магнитоплазменной аэродинамики

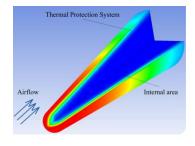
(бюджетная тема, науч. рук. – д.ф.м.н. Битюрин В.А.)

Основные направления:

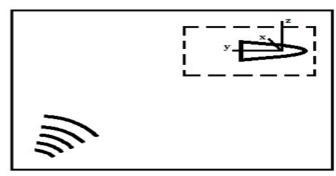
- экспериментальные и расчётно-теоретические исследования взаимодействия высокоскоростных газоплазменных потоков с внешними электрическими, магнитными и электромагнитными полями (д.ф.-м.н. Бочаров А.Н., д.ф.-м.н. Битюрин В.А.);
- плазмообразование в пристенных областях гиперзвуковых летательных аппаратов (д.ф-м.н.Бочаров А.Н.);
- управление воспламенением и контроль горения в потоках газопламенных смесей в проточных камерах сгорания с помощью электрических и электромагнитных полей, интенсификация смешения (д.ф.-м.н. Леонов С.Б., к.ф.-м.н. Филимонова Е.А.);
- физика электрического разряда в высокоскоростных потоках газов, разработка генераторов плазмы, электроразрядных и МГД актуаторв и исследования их характеристик (к.ф.-м.н. Моралев И.А., к.т.н. Бровкин В.Г.);
- генерация и исследования потоков гетерогенной плазмы (д.ф.-м.н. Климов А.И., д.ф.-м.н., к.ф.-м.н. Пащина А.С)

Исследования и разработки практической направленности

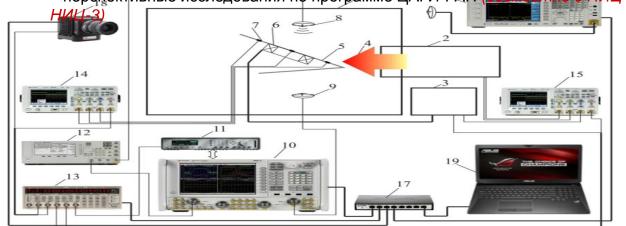

1. Разработка современных вычислительных комплексов для широкого круга задач гиперзвуковой аэродинамики - совместный проект НИЦ-1 и НИЦ-2 в интересах Московского Института теплотехники

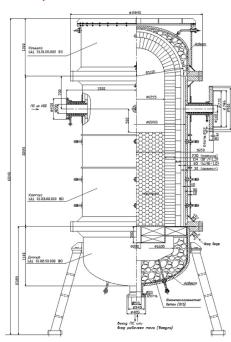

(научн. рук. – д.ф.-м.н. Бочаров А.Н., к.т.н. В.П. Петровский)

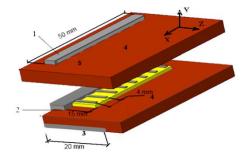
Трехмерные нестационарные гиперзвуковые течения вокруг тел произвольной формы


- Равновесные/неравновесные течения,
- Плазмообразование в ударном слое,
- Сопряженный тепло- массообмен на обтекаемых поверхностях,
- Гиперзвуковые летательные аппараты нового поколения,
- Термогазодинамика смесей сложного состава,
- 2D/3D моделирование внутренних и внешних течений,
- Прохождение электромагнитных волн в гиперзвуковом ударном слое и в следе гиперзвуковых ЛА (радиопрозрачность)

Реализация на компактных гетерогенных (CPU/GPU) вычислительных комплексах производительностью 1 – 10 ТФлопс

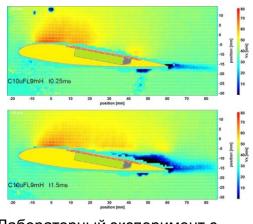





2. НИР и конструкторские проработки (совместно с НИЦ-3) в рамках программы развития экспериментальной базы ЦАГИ в обеспечение ускоренного развития гиперзвуковых технологий

Хоздоговора с ЦАГИ (науч. рук. – д.ф.м.н. Битюрин В.А.)

- исследования и конструкторские проработки создания кауперных подогревателей для гиперзвуковых аэродинамических труб (Мирошниченко В.И.);
- расчетно-теоретические и экспериментальные исследования МГД преобразования в канале и разработка охлаждаемых стенок канала МГД ускорителя для гиперзвуковой аэродинамической трубы СМГДУ с целью кардинального увеличения длительности работы (Грушин В.А, Залкинд В.И.);
- создание радиоизмерительного комплекса на СМГДУ для исследования взаимодействия электромагнитного излучения с плазменными формированиями в гиперзвуковом ударном слое (Пащина А.С., Бровкин В.Г.));
- развитие плазменной технологии зажигания и поддержания горения в переходных режимах ГПВРД (Фирсов А.А., Яранцев Д.А.);
- исследование возможностей управления аэродинамическим шумом ЛА с помощью плазменных и МГД технологий (*Моралев И.А.*);
- перспективные исследования по программе ЦАГИ-РАН (совместно с НИЦ-1 и



3. Управление аэродинамическими характеристиками вертолетных лопастей с помощью плазменных и МГД актуаторов

Ходоговора с МВЗ им. Миля

(науч. рук. – д.ф.м.н. Битюрин В.А., отв. исполнители к.ф.м.н. Моралев И.А., к.т.н. Казанский П.Н.)

Лабораторный эксперимент с МГД актуатором (ON/OFF)

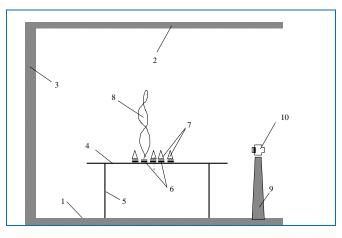
МГД актуатор для рулевого винта Ми-34

Рулевой винт Ми-34

Кроме того в Отделении выполнялись:

Международные проекты:

FP7 OpenAir (2010-2014) и ORINOCO (2012-2014), BATTERFLI (2014-2016), LIA KAPPA (2015-2018)(в стадии оформления)


6 проектов РФФИ

Начаты работы в рамках гранта ОИВТ РАН РНФ

Изучение условий генерации нестационарных свободных огненных вихрей

(чл.-корр. РАН А.Ю.Вараксин Алексей Юрьевич)

Экспериментальная установка

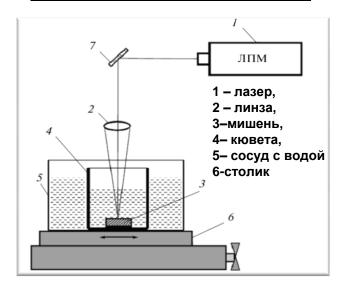
Обозначения: 1 - пол; 2 - потолок; 3 - одна из стен; 4 - стол (лист алюминия); 5 - ножка стола; 6 - таблетки уротропина; 7 - пламенна над таблетками; 8 - огненный вихрь; 9 - стойка; 10 - цифровая видеокамера.

Лабораторное моделирование

Продемонстрирована принципиальная возможность физического моделирования свободных концентрированных огненных вихрей без использования принудительной закрутки. Генерация вихревых структур происходила при горении таблеток уротропина (гексаметилентетрамина), располагаемых на подстилающей поверхности (лист алюминия).

С использованием фотосъемки и инфракрасной термометрии получены данные, об особенностях возникновения огненных вихрей.

Проведены оценки некоторых интегральных параметров генерируемых огненных вихревых структур (время жизни, высота, диаметр).


Огненные вихри и смерчи в природе

Применение эффектов гигантского комбинационного рассеяния и усиления флюоресценции для диагностики пламен и высокотемпературных потоков

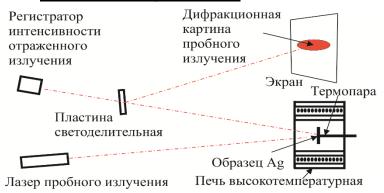
д.т.н. Карпухин Вячеслав Тимофеевич,

лаб.2.2.4.1 – физического моделирования двухфазных течений

<u>Получение наноструктур методом</u> <u>лазерной абляции в жидкости</u>.

AFM снимок наночастиц оксида молибдена

Рентгеновская дифрактограмма, фазы: $A - MoO_3$, $B - MoO_2$, $B - MoO_3$


Результаты:

- •Исследованы процессы синтеза наноструктурированного циркония и молибдена при лазерной абляции.
- •Показано, что наноструктурированные переходные металлы, их оксиды и композиты обладают чрезвычайно широким спектром структурных, морфологических и оптических свойств.
- •Показано, что метод лазерной абляции в жидкости позволяет синтезировать наносоединения с заданными структурными, морфологическими и оптическими свойствами, что создает принципиальную основу для разработки методов диагностики газовых потоков и пламен с применением гигантского комбинационного рассеяния, усиленной флюоресценции, избирательной абсорбции.

Эволюция дифракционнной картины пробного излучения, отраженного поверхностью серебра при плавлении

Чл.-корр. РАН Батенин Вячеслав Михайлович, к.т.н. Менделеев Владимир Яковлевич,

Схема эксперимента

Условия эксперимента

- Образец Ag (99.9%) с однонаправленной слабой шероховатостью поверхности (Rq=65 нм).
- Нагрев образца в печи до температуры плавления в воздушной атмосфере.
- Пробное лазерное излучение: λ =660 нм, угол падения ~5°.
- Регистрация температуры, интенсивности I излучения, отраженного в зеркальном направлении, и дифракционной картины пробного излучения (см. Таблицу ниже).

Результаты эксперимента

Твердое состояние		Плавление				Жидкое состояние				
22°C	850°C	956.2°C	957.4°C	957.4°C	957.3°C	957.5°C	957.7°C		958.3°C	
And the last of th	THE PROPERTY AND ADDRESS OF THE	Miles and the same of the same	ALTER METAL PROPERTY.		-			•		
I=0.22		I=0.54	I=0.69	I=0.64	I=0.64	I=0.74	I =0.91	I=1.00	I=0.97	I=0.97

РЕЗУЛЬТАТЫ:

Для твердого состояния образца серебра и его поверхности при температурах от 22°С до 956.2°С яркость дифракционной картины пробного излучения увеличивается, а структура изображения остается неизменной. При плавлении поверхности и всего образца (957.4°С-957.7°С) в дифракционной картине излучения изменяются структура изображения и интенсивность излучения. Эти изменения можно объяснить уменьшением шероховатости и влиянием деформаций, которые ослабевают с продвижением фронта плавления вглубь образца. В жидком состоянии температура расплава и структура изображения остаются неизменными.

вывод:

Дифракционная картина пробного излучения, отраженного однонаправленной слабой шероховатостью поверхности, позволяет наблюдать эволюцию серебра при плавлении.

ВЫВОДЫ

- 1. Следует продолжить работу по оптимизации структуры НИЦ-2, прежде всего, на уровне отделов, повышению активности руководителей и сотрудников подразделений по научным публикациям в высокорейтинговых научных изданиях, привлечению дополнительных источников финансирования проводимых исследований и прикладных разработок с учетом предстоящих конкурсов РФФИ, РНФ, Сколково, Минобрнауки по импортозамещению, в рамках 218 постановления и других.
- 2. Для подразделений, выполняющих прикладные исследования и разработки, ключевым вопросом является поиск и установление деловых контактов с потенциальными Индустриальными партнерами, обеспечивающими коммерциализацию разработок ОИВТ РАН.
- 3. Предлагается рассмотреть возможность и целесообразность создания в ОИВТ РАН (на первом этапе, возможно, на базе НИЦ-2 и НИЦ-3) специального проектно-конструкторского подразделения, обеспечивающего подготовку и оформление наиболее продвинутых к практике результатов прикладных разработок для надлежащего представления Индустриальным партнерам и коммерциализации