

Воспламенение газов: проблемы управления и безопасности

В.В. Голуб

Объединенный институт высоких температур РАН,

Москва, Россия

Как замедлить?

- Водород
- Ацетилен

Вопросы

- 1. Что может быть причиной самовоспламенения холодного водорода при утечке в открытое пространство или в канал?
- 2. Можно ли хранить ацетилен в баллоне в количестве в 2 раза превышающем обычное?
- 3. Можно ли свистком предотвратить или задержать воспламенение и детонацию?
- 4. Как повлияют местные сужения или уширения канала на переход горения в детонацию ?
- 5. Можно ли в 2 раза снизить энергию инициирования детонации с помощью магнитного поля?

1. Самовоспламенение водорода

1. Что может быть причиной самовоспламенения холодного водорода при утечке в открытое пространство или в канал?

экологически чистый источник энергии

активно развиваются топливные элементы

хранение водорода под высоким давлением

Широкие концентрационные пределы воспламенения 3,3–81,5 %

700 атм !!!! QUANTUM Technologies WorldWide, Inc

Несчастные случаи с водородом

Источник возгорания	Несчастные случаи с водородом	
	Число	%
Поджог	0	0
Соударение	2	2.5
Пламя	3	3.7
Рабочая поверхность	2	2.5
Электричество	2	2.5
Трение	2	2.5
Источник не выявлен	70	86.3
Всего	81	100.0

Astbury G.R., Hawksworth S.J., 2005.

Related works

Compression ignition, Joule-Thomson expansion, <u>diffusion</u> <u>ignition</u> and hot surface ignition are unlikely ignition mechanisms for most accidental releases of hydrogen at ambient temperature."

????

Astbury G.R., & Hawksworth S.J. (2005). Spontaneous ignition of hydrogen leaks: A review of postulated mechanisms. In Proc. of The International Conference on Hydrogen Safety, Pisa.

Предпосылки данной работы «self-ignition in a hydrogen jet is impossible»

P = 40 MPa; R = 1 mm

водорода в атмосферу. Давление в баллоне – 400 атм. Радиус выходного отверстия – 1 мм.

(Liu Y.-F., Tsuboi N., Sato H., Higashino F., Hayashi A.K. // In Proc. of The 20th International Colloquium on the Dynamics of Explosions and Reacting Systems, Montreal, Canada. 2005)

Streak record and schlieren photographs of impulse jet formation

Математическая модель

• Полная система уравнение Навье-Стокса для мультикомпонентной смеси газов

- Детальная кинетика окисления водорода (21 реакция, 11 компонент Miller J.A., Bowman C.I.)
- Учитывалось влияние вязкости и теплопроводности
- Схема Годунова
- Для вычислений использовались пакеты CHEMKIN и FLUENT

Temperature distribution along the jet

Calculated H₂O concentration distribution related to the H₂O concentration in fully combusted mixture

Z, **X** – distance from the orifice along and normal to the flow direction. Isolines 1-4 correspond to 70, 30, 10, and 2% respectively. $t = 8 \ \mu s$

Maximum temperature-time distributions

Discharging and ambient gas temperatures 300 K

Подобрать такие граничные условия, чтобы диффузионное само-воспламенение не возникло.

 Заменить систему из одного отверстия радиусом 2 мм на
 эквивалентную по площади систему из 4 отверстий радиусом 1 мм 2. Разнести отверстия системы на расстояние достаточное для того чтобы воспламенение не возникало.

Расчетная область и сетка

Предотвращение самовоспламенения

1 МКС

2 мкс

5 мкс

Картины течения для температуры для случая 4-х отверстий радиусом 1 мм и одного отверстия радиусом 2 мм

Предотвращение самовоспламенения

Dependences of maximal temperature on the time at the release from: **black** – 1 orifice (d=4 mm), **blue** – 4 orifices (d=2 mm, L=3 mm), **red** - 4 orifices (d=2 mm, L=5 mm), **green** - 4 orifices (d=2 mm, L=10 mm)

Взаимодействие ударных волн от двух близко расположенных струй

Диффузионное самовоспламенение водорода при импульсном истечении в канал с воздухом

Принцип действия ударной трубы

зону перемешивания

2

4

(c)

Экспериментальные установки

Two scenarios of hydrogen ignition: flame is held at the exit (top), flame is blowed-out and extinguished (bottom), T. Mogi, 2006

Map of ignition and forming the jet flame depending on the length of extension nozzle and burst pressure, T. Mogi, 2006

Схема экспериментальной установки

1 – сосуд с водородом, 2 – манометр, 3 – камера высокого давления, 4 – диафрагменный блок, 5 – медная диафрагма, 6 – датчик давления РСВ, 7 – фотодатчик, 8 – камера низкого давления; 9 – буферная емкость. X – расстояние от диафрагмы до датчика давления.

Влияние начального давления Р₀ в баке на место самовоспламенения водорода

Повышение давления ускоряет самовоспламенение водорода

Самовоспламенение водорода за ударной волной в канале

X-t-диаграмма ударно-волновых процессов при истечении водорода в канал (P₀=56 атм)

Моделирование самовоспламенения водорода

- 1. Полная система уравнений Навье-Стокса для мультикомпонентной смеси газов (*Baev V. et al., NASA, 1985*)
- 2. Явная конечно-разностная схема распадного типа. Схема Роя

Формирование области горения в канале

Температура на стенке по длине канала

Безопасная длина канала

2. Ингибирование взрывного разложения ацетилена

2. Можно ли хранить ацетилен в баллоне в количестве в 2 раза превышающем обычное?

Можно ли избежать взрывного разложения ацетилена без пористой массы и ацетона?

Экспериментальная установка

Внутренний диаметр 20 мм. Начальное давление смесей – 1-3 атм. Максимальное давление за ударной/детонационной волной – 100 атм.

Экспериментальная установка

Ударное сжатие смеси

•••

Ударное сжатие смеси

....

Ударно-волновые процессы в смесях ацетилена с пропан/бутаном

Траектории ударных волн и волны разложения

УВ – ударная волна, ОУВ – отраженная ударная волна, КП – контактная поверхность, ВР – волна разложения

Отвод тепла или гибель радикалов?

Моделирование взрывного разложения

Начальные и граничные условия

- 1. X % ацетилена + (1-Х) % водорода перед ударной волной, 0 < X < 100
- 2. Начальное давление смесей 1 атм
- 3. Ударная волна стационарна, V = 1500 м/с
- 4. Стенки гладкие, нетеплопроводные, некаталитичные
- 5. Течение ламинарное

Кинетическая схема

- 1. Упрощенная модельная схема на основе схемы *Танзавы и Гардинера*.
- Реакции только в газовой фазе. Гетерогенный процесс формирования частиц сажи не рассматривался

Влияние ингибитора на разложение ацетилена

 Э. Можно ли свистком предотвратить или задержать воспламенение и детонацию?

История

Теория процессов зажигания газовых смесей **Д. А. Франк-Каменецкий:** - механизм воспламенения газовой смеси обусловлен в основном теплопроводностью

Кумагаи : 1 - поток приводит к снижению

воспламеняемости смеси

2- эффект увеличения скорости горения при воздействии на него звука.

Цель

Влияние воздействия акустического поля на воспламеняемость газообразных горючих смесей

Экспериментальная установка

1 – баллоны с компонентами горючей смеси, 2 – буферные емкости системы подачи компонентов топлива, 3 – манометры, 4 – пневмоклапаны, 5 – инжекторный блок, 6 - ДКС, 7 – система инициирования, 8 – искровой разрядник, 9 – датчики давления, 10 – фотодетекторы, 11 – компьютер «Pentium III» с осциллографическими платами

Инжекторы

Радиальный инжектор

Звуковой генератор

t=48 μc

Предотвращение ПГД

ER=1.1 Рдкс=1.4

Гидродинамический перенос горючей смеси с учетом вязкости, многокомпонентной диффузии, теплопроводности и выделения энергии за счет окисления водорода

$$\frac{\partial}{\partial t} \rho + \frac{\partial}{\partial x_{i}} (\rho u_{i}) = 0, \qquad (1)$$

$$\frac{\partial}{\partial t}(\rho u_{i}) + \frac{\partial}{\partial x_{j}}(\rho u_{i}u_{j} + \delta_{ij}P - \sigma_{ij}) = 0 , \qquad (2)$$

$$\frac{\partial}{\partial t}(\rho\epsilon + \frac{1}{2}\rho u_{i}u_{i}) + \frac{\partial}{\partial x_{i}}(\rho u_{i}h + \frac{1}{2}\rho u_{i}u_{j}u_{j} + q_{i} - u_{j}\sigma_{ij}) = 0 , \qquad (3)$$

$$\frac{\partial}{\partial t} c_{m} \rho + \frac{\partial}{\partial x_{i}} (c_{m} \rho u_{i}) - \frac{\partial}{\partial x_{i}} (\rho D \frac{\partial c_{m}}{\partial x_{i}}) = -\rho \left(\frac{dc_{m}}{dt}\right)_{x_{HM}}, \qquad (4)$$

$$\sigma_{ij} = \eta \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial u_k}{\partial x_k} \right), \tag{5}$$

$$q_{i} = -\kappa \frac{\partial T}{\partial x_{i}} - \rho D \sum_{m} h_{m} \frac{\partial c_{m}}{\partial x_{i}} , \qquad (6)$$

$$\varepsilon = c_v T + \sum_m h_m c_m , \qquad (7)$$

$$P = R\rho T \sum_{m} \frac{c_{m}}{A_{m}}, \qquad (8)$$

$$h = \varepsilon + \frac{P}{\rho} , \qquad (9)$$

$$c_{v} = \sum_{m} \frac{c_{m}}{A_{m}} (c_{pm} - R), \qquad (10)$$

Распространение пламени

Диаметр затравки d=1.6mm, начальная температура в центре очага - T=2500K. Амплитуда давления звуковых колебаний равнялась 2% от атмосферной. Диаметр трубы-d=1 см.

ER=1.1

Ускорение процесса остывания очага горения

Зависимость максимальной температуры пламени от времени (ER=1)

4. Как повлияют местные сужения или расширения канала на переход горения в детонацию ?

Как ускорить? Перспективные энергетические установки Воспламенение

Эффективность детонационного сжигания

1455

 1940 г.
 ЖУРНАЛ ТЕХНИЧЕСКОЙ ФИЗИКИ
 Том Х, вып. 17

 1940
 JOURNAL OF TECHNICAL PHYSICS
 Vol. X, No 17

К ВОПРОСУ ОБ ЭНЕРГЕТИЧЕСКОМ ИСПОЛЬЗОВАНИИ ДЕТОНАЦИОННОГО ГОРЕНИЯ

With the second states of a present of

Я.Б. Зельдович

При детонационном горении¹ взрывчатых газовых смесей в момент, непосредственно следующий за прохождением детонационной волны (протеканием химической резкция), продукты горения оказываются в состоянии (назовем его "состояние D"), весьма богатом энергией тепловой и кинетической (поступательного движения).

Классическая термодинамическая теория Жуге позволяет вычислить, в предположении отсутствия потерь, "состояние D" продуктов горения. Получаемое одновременно в таком расчете значение скорости распространения детонации находится в хорошем согласии с опытом, подтверждая правильность термодинамической теории как предельного случая в отсутствии потерь.

Расчет дает для продуктов горения в детонационной волне:

плотность — в 2:1.7 раза больше плотности начальной смеси (приблизительно в k + 1/k раза, где k показатель адиабаты $pv^{k} = \text{const}$ для продуктов горения);

Я.Б. Зельдович, 1940

 $\eta_{\text{детонация}} > \eta_{V=const} > \eta_{P=const}$

First PDE powered flight, January 31, 2008

PDE-powered cruise lasted about 10 seconds

© AFRL

Переход горения в детонацию

X-t- диаграмма перехода горения в детонацию при слабом инициировании

Схема канала для моделирования формирования детонации

- 1. Степень перекрытия канала камеры сгорания 0,94
- 2. Степень расширения форкамер 2,56 мм, длина 620 мм

Сокращение ПГД более чем в два раза

b) С двумя кольцевыми преградами (степень перекрытия 0,74–0,94)

400

c) С расширением и одной кольцевой преградой внутри

X-t-диаграммы формирования детонации. Черные линии – ударные волны, Красные линии – фронты пламени, Зеленые линии – детонационные волны. 5. Влияние магнитного поля на инициирование детонации

5. Можно ли в 2 раза снизить энергию инициирования детонации с помощью магнитного поля?

1-воздушный клапан, 2-форсунка, 3-детонационная труба, 4-расширитель, 5-глушитель, 6баллон воздушный, 7-топливный клапан, 8-разрядники, 9-датчики давления, 10воздушный компрессор, 11-топливная ёмкость, 12-топливный фильтр, 13-блок управления, 14-блок питания разрядников, 15-аналого-цифровой преобразователь, 16-регистрирующий компьютер.

а б Схема разрядников без (а) и с (б) поддержкой магнитным полем. Величина разрядного промежутка 7 мм. 1 – Силовой электрод. 2 – Инициирующий электрод. 3 – Корпус из поликарбоната. 4 – дополнительный виток (накопительная емкостью C1 =500 мкф, напряжение - 1600 В, время разряда – 40 мкс, средний ток – 20 000 А энергия накопителя – 640 Дж.

Магнитное поля разрядника позволяет <u>до двух раз</u> уменьшить энергию инициирования детонации

Зависимость скорости волны в гладкой детонационной трубе от энергии ёмкостного накопителя для ТВС с гексаном. а) – Разрядник 1. б) - Разрядник 2. в) - Разрядник 3. V1 – первая база от разрядника. V2 - вторая база от разрядника. V3 - третья база от разрядника.

Перспективы развития

•Разработка норм и стандартов безопасного хранения водорода

•Разработка фундаментальных основ новой технологии безопасного хранения и использования сжиженного и газообразного ацетилена.

•Управление воспламенением и распространением горения с помощью акустического воздействия

•Повышение термодинамической эффективности преобразования химической энергии топлива в полезную работу путем импульсного детонационного горения.

•Повышение эффективности воспламенения топливно-воздушных смесей с использованием собственного магнитного поля искрового разрядника.

