Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)

Принято на Ученом совете ОИВТ РАН Протокол № 8 от 23.12.2022

«Утверждаю» Директыра МВТ РАН

THE POWER OF THE P

РАБОЧАЯ ПРОГРАММА

дисциплины «Молекулярное моделирование на современных суперкомпьютерах»

направление подготовки: 01.06.01 «Математика и механика» (направленность -1.1.9 Механика жидкости, газа и плазмы)

Квалификация **Исследователь. Преподаватель-исследователь.**

> Москва 2022

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Молекулярное моделирование на современных суперкомпьютерах» является ознакомление с методами молекулярной динамики (МД) и Монте-Карло (МК) для решения задач физики плазмы и конденсированного вещества, физической химии и биологии, а также получение навыка использования современных суперкомпьютеров для проведения численных экспериментов с применением указанных методов.

Задачами данного курса являются:

- формирование представлений о постановке численного эксперимента с использованием методов атомистического моделирования для прикладных и фундаментальных исследований в естественных науках;
- получение знаний о моделях взаимодействия атомов и молекул, методах решения уравнений динамики частиц, теоретических основах статистической обработки результатов численных экспериментов;
- выработка умений использования готовых пакетов программ молекулярного моделирования, работы на суперкомпьютерных вычислительных системах в качестве пользователя;
- приобретение навыков создания программ молекулярно-динамического моделирования, разработки параллельных программ для систем с общей и распределенной памятью.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП АСПИРАНТУРЫ

Дисциплина «Вычислительные методы в моделировании» базируется на материалах по дисциплинам «Высшая математика» (математический анализ, высшая алгебра, дифференциальные уравнения и методы математической физики), блока «Общая физика». Освоение курса необходимо для разносторонней подготовки к профессиональной деятельности, включающей как проведение фундаментальных исследований, так и постановку и решение инженерных задач с использованием современной компьютерной техники.

3. УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ

Подготовка научных и научно-педагогических кадров в аспирантуре.

4. ГОД И СЕМЕСТР ОБУЧЕНИЯ

Второй год, третий семестр обучения.

5. ОБЪЁМ УЧЕБНОЙ НАГРУЗКИ И ВИДЫ ОТЧЁТНОСТИ.

лекции	<u>36</u> часов
практические занятия	<u>54</u> часов
лабораторные работы	нет
индивидуальные занятия с преподавателем	нет
Самостоятельные занятия	<u>90</u> часов
ВСЕГО	5 3ач. ед., 180часов

6. КОНКРЕТНЫЕ ЗНАНИЯ, УМЕНИЯ И НАВЫКИ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины «Физико-химические процессы в газоразрядной плазме» обучающийся должен:

1. Знать:

- цели и задачи научных исследований в области молекулярного моделирования, базовые принципы и методы их организации, основные источники научной информации и требования к представлению информационных материалов;
- область применения современных суперкомпьютеров, роль компьютерного моделирования в современных научных исследованиях;
- сферу применения методов атомистического моделирования в задачах физики, химии, биологии;
- основные законы и формулы, необходимые для построения численных схем, граничных и начальных условий, моделей взаимодействия частиц в методах молекулярной динамики и Монте-Карло;
- архитектуру и основные характеристики современных суперкомпьютерных систем.

2. Уметь:

- выделять и систематизировать основные идеи в научных статьях по методологии и результатам атомистического моделирования, критически оценивать поступающую информацию, избегать автоматического применения стандартных формул и приемов при решении задач;
- проектировать и создавать новые параллельные программы, выбирать оптимальные алгоритмы распараллеливания, в том числе, для задач атомистического моделирования;
- анализировать результаты атомистического моделирования и обобщать полученные данные;
- компилировать и запускать программы на суперкомпьютерных кластерах, контролировать правильность их выполнения, выявлять и исправлять типичные ошибки.

3. Владеть:

- навыками обсуждения результатов молекулярного моделирования, делая важные замечания и отвечая на вопросы;
- навыками работы со стандартным программным обеспечением суперкомпьютерных кластеров;
- навыками работы с наиболее распространенными пакетами атомистического моделирования;
- навыками создания и отладки параллельных программ на суперкомпьютерных кластерах;
- навыками проведения простейших численных экспериментов методам молекулярной динамики и Монте-Карло.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины

Перечень разделов дисциплины и распределение времени по темам:

№ раздела и название	Количество часов
1. Методы молекулярного моделирования	50
2. Архитектура и принципы работы суперкомпьютеров	12
3. Параллельное программирование для систем с общей	48
памятью	

4. Параллельное программирование для систем с	36
распределенной памятью	
5. Оптимизация и распараллеливание в задачах	34
молекулярного моделирования	
ВСЕГО (часов)	180

Вид занятий

Лекции:

No॒	Темы	Трудоёмкость
п.п.		(количество часов)
1	История и основные положения методов молекулярного моделирования	2
2	Решение уравнений движения в методе молекулярной динамики	2
3	Начальные и граничные условия	2
4	Модели взаимодействия частиц	2
5	Метод Монте-Карло	2
6	Высокопроизводительные вычислительные системы	2
7	Классификация вычислительных систем и алгоритмов	2
8	Внутренний параллелизм современных процессоров	2
9	Разделение процессорного времени в операционных системах	2
10	Проблемы синхронизации потоков в системах с общей памятью	2
11	Технология OpenMP	2
12	Теоретические основы параллельных алгоритмов	2
13	Программное обеспечение суперкомпьютерного кластера	2
14	Основы технологии МРІ	2
15	Функции коллективного обмена сообщениями в МРІ	2
16	Оптимизация расчета взаимодействия частиц	2
17	Параллельные алгоритмы в молекулярном моделировании	2
18	Применение графических ускорителей для задач молекулярного моделирования	2
]	ВСЕГО (часов)	36

Практические занятия:

№	Темы	Трудоёмкость
п.п.		(количество часов)
2	Реализация схемы решения уравнений движения в методе молекулярной динамики	4
3	Реализация начальных условий (случайное	2

	распределение, кристаллическая решетка) и метода	
	ближайшего образа	
4	Реализация модуля расчета взаимодействий между	4
	частицами на основе потенциала Леннарда-Джонса	
5	Реализация алгоритма Метрополиса	4
9	Простейшая многопоточная программа с	4
	использованием библиотеки POSIXThreads	
10	Вычисление определенного интеграла с	4
	использованием библиотеки POSIXThreads	
11	Вычисление определенного интеграла с	4
	использованием технологииОрепМР	
12	Определение и устранение проблем синхронизации	4
	в многопоточных программах	
13	Работа на учебном суперкомпьютерном кластере и	4
	запуск задач с использованием системы очередей	
	PBS	
14	Вычисление определенного интеграла с	4
	использованием библиотеки МРІ	
15	Алгоритмы «циклический сдвиг» и «эстафета» с	4
	использованием библиотеки MPI	
16	Распараллеливание расчета взаимодействий в	4
	программе МД моделирования с использованием	
	OpenMP	
17	Распараллеливание расчета траекторий в программе	4
	МД моделирования с использованием МРІ	
18	Создание простейшей программы для графических	4
	ускорителей в среде программирования	
	NVidiaCUDA	
	ВСЕГО (часов)	54
l	` '	

Самостоятельная работа:

№ п.п.	Темы	Трудоёмкость
		(количество часов)
1	- изучение теоретического курса –	50
	выполняется самостоятельно каждым	
	обучаемым по итогам каждой из лекций,	
	результаты контролируются	
	преподавателем на лекционных занятиях,	
	используются конспект (электронный)	
	лекций, учебники, рекомендуемые данной	
	программой, методические пособия.	
2	- решение задач по заданию	24
	преподавателя решаются задачи,	
	выданные преподавателем по итогам	
	лекционных занятий и сдаются в конце	
	семестра, используются конспект	
	(электронный) лекций, учебники,	
	рекомендуемые данной программой, а	
	также сборники задач, включая	

	электронные, учебно-методические пособия.	
3	Подготовка к дифференцированному	16
	зачету	
ВСЕГО (часов)		90

Содержание дисциплины

$N_{\underline{0}}$	Название	Разделы и темы	Содержание	Объ	Бем
п/п	модулей	лекционных		Аудиторн	Самостоя
		занятий		ая работа	тельная
				(часы)	работа
	•	**	**		(часы)
1	1	История и	История и направление	2	2
	Методы	основные	развития методов		
	молекулярного	положения	молекулярного		
	моделирования	методов	моделирования,		
		молекулярного	необходимость применения		
		моделирования	суперкомпьютеров. Типы		
			моделируемых систем и		
			процессов. Обзор пакетов		
			молекулярного		
			моделирования.		
2		Решение	Решение уравнений	6	6
		уравнений	движения частиц. Ошибки		
		движения в	интегрирования и ошибки		
		методе	округления. Точность		
		молекулярной	сохранения энергии в МД		
		динамики	системе. Выбор		
			оптимального шага по		
			времени		
3		Начальные и	Начальные и граничные	4	6
		граничные	условия при интегрировании		
		условия	уравнений движения. Метод		
			ближайшего образа.		
			Применение термостатов и		
			баростатов		
4		Модели	Иерархия потенциалов	6	6
		взаимодействи	взаимодействия частиц для		
		я частиц	различной степени		
			детализации моделируемой		
			системы. Модели		
			взаимодействия		
			нейтральных атомов и		
			молекул, силовые поля для		
			биологических систем,		
			многочастичные		
			потенциалы для металлов.		
			Явное моделирование		
			динамики электронов,		
			классическая и квантовая		

			молекулярная динамика.		
5		Метод Монте-	Метод Монте-Карло для	6	6
		Карло	моделирования систем	O	Ü
		Tapilo	многих частиц. История и		
			обоснование метода.		
			Алгоритм Метрополиса.		
			Выбор амплитуды		
	TT	D	случайных источников.	2	2
6	II	Высокопроизв	Обзор	2	2
	Архитектура и	одительные	высокопроизводительных		
	принципы	вычислительн	систем в России и за		
	работы	ые системы	рубежом. Обсуждение		
	суперкомпьюте		последних редакций		
	ров		рейтингов Тор-500 и Тор-50.		
			Качественный переход от		
			последовательных к		
			массивно-параллельным		
			архитектурам и алгоритмам.		
			Технологические проблемы		
			повышения быстродействия		
			компьютеров, путь к		
			экзафлопсной		
			производительности.		
			Проблемы		
			энергопотребления и		
			надежности		
			суперкомпьютеров.		
7		Классификация	Классификация	2	2
		вычислительны	вычислительных систем.		
		х систем и	Параллелизм по задачам и		
		алгоритмов	по данным. Системы с		
			общей и распределенной		
			памятью. Кластеры типа		
			Beowulf как основа		
			современных		
			высокопроизводительных		
			систем.		
8		Внутренний	Внутренний параллелизм	2	2
		параллелизм	современных процессоров,		
		современных	скалярная и суперскалярная		
		процессоров	архитектуры, конвейер		
			команд. Многоядерные		
			процессоры. Модели		
			взаимодействия с памятью		
			UMA и NUMA.		
			Перспективы наращивания		
			числа ядер, проблема		
			когерентности кэша.		
9	III	Разделение	Особенности создания	6	6
	Параллельное	процессорного	параллельных программ для		
	программирова	времени в	систем с общей памятью.		
	ние для систем	операционных	Поддержка параллелизма на		
	THE ASIA CHOICIN	энерационных	110AA PARIA HAPARISTOSHIA HA		

			сообщениями.		
			двухточечного обмена		
			программ. Функции		
			Компиляция и запуск		
		технологии МРІ	MPI и основные понятия.		
14	памятью	Основы	Классификация функций	6	6
	распределенной		(PBS, SLURM).		
	С		управления очередями задач		
	ние для систем	рного кластера	прикладных задач. Системы		
	программирова	суперкомпьюте	кластера и решения		
	Параллельное	обеспечение	администрирования		
13	IV	Программное	Программы для	6	6
			зависимостями.		
			информационными		
			Распараллеливание циклов с		
			Бернстайна.		
			Достаточные условия		
		- Pillings	графы исполнения.		
		алгоритмов	зависимость операций,		
		параллельных	ускорения. Информационная		
12		основы	производительности и	U	U
12		Теоретические	параллельных программ. Понятия загруженности,	6	6
			программ. Отладка		
			распараллеливанием		
			Автоматическое		
			программирования.		
			и параллельных языков		
			высокоуровневых библиотек		
			Использование		
			технологии OpenMP.		
		OpenMP	программ с использованием		
11		Технология	Распараллеливание	6	6
			тупики.		
			синхронизации потоков,		
			процедур. Избыточная		
			эффекты, реентерабельность		
			переменным. Побочные		
			безопасный доступ к общим		
		общей памятью	общие переменные потоков,		
		системах с	программы. Локальные и		
		потоков в	результатов работы		
		синхронизации	детерминированность		
10		Проблемы	Синхронизация потоков и	6	6
			систем.		
			средств операционных		
			многопоточных программ с использованием базовых		
			и потоки (threads). Создание		
	памятью		системы. Процессы (process)		
	•	системах			
	с общей	системах	уровне операционной		

		I			
		коллективного	обмена сообщениями.		
		обмена	Односторонняя и		
		сообщениями в	двухсторонняя модели		
		MPI	обмена сообщениями.		
			Дополнительные		
			возможности стандарта МРІ-		
			2.		
16	V	Оптимизация	Списки ближайших соседей	6	6
	Оптимизация и	расчета	(списки Верле), связанные		
	распараллелива	взаимодействия	списки частиц в ячейках.		
	ние в задачах	частиц	Оптимизация для		
	молекулярного		дальнодействующих		
	моделирования		потенциалов: TreeMD,		
	-		PPPM.		
17		Параллельные	Декомпозиция по частицам	6	6
		алгоритмы в	и по пространству.		
		молекулярном	Оптимизация передачи		
		моделировании	данных. Эффективность		
			распараллеливания, влияние		
			топологии кластера.		
18		Применение	Архитектура ГУ,	6	4
		графических	организация памяти и		
		ускорителей	избежание задержек,		
		для задач	связанных с обращением к		
		молекулярного	памяти. Средства разработки		
		моделирования	программ для ГУ. Кластеры		
			на основе гибридных		
			систем, включающих ГУ.		
			Эффективность применения		
			ГУ для задач молекулярного		
			моделирования.		
	ВСЕГО (часов))	_	90	90

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения

Тестовые задания

3	тестовые задання					
№	Вопрос	Варианты ответа	Верный вариант ответа			
Π/Π						
1	Какое общее требование	а) потенциальная функция	а) потенциальная			
	предъявляется к потенциалу	должна быть гладкой	функция должна быть			
	взаимодействия?	б) потенциал должен	гладкой			
		стремится к нулю на				
		малых расстояниях				
		в) потенциальная функция				
		должна иметь минимум				
2	Что обуславливает выбор шага	а) требуемая точность	б) требуемая точность			

	синхронизации применяется	б) взаимное исключение	
	для защиты глобального	в) событие	
	счетчика в многопоточной	В) соощтис	
	программе?		
12	Какой метод	а) декомпозиция по	а) декомпозиция по
1-	распараллеливания на кластере	пространству	пространству
	наиболее эффективен для	б) декомпозиция по	
	короткодействующих	частицам	
	потенциалов?	в) параллельный расчет	
		взаимодействий и решение	
		уравнений движения	
13	В каких случаях потоки	а) никогда	в) если они принадлежат
	используют общую память?	б) если они получены в	одному и тому же
		результате нескольких	процессу
		запусков одного и того же	
		приложения	
		в) если они принадлежат	
		одному и тому же	
		процессу	
14	Какой тип зависимости	а) истинная	а) истинная
	содержит последовательность	б) по выходным данным	,
	операторов:	в) антизависимость	
	x = a + 2*b;		
	y = x/c;		
15	Какой тип зависимости	а) истинная	б) по выходным данным
	содержит последовательность	б) по выходным данным	
	операторов:	в) антизависимость	
	x = a + 2*b;		
	x = y/c;		
16	Какой тип зависимости	а) истинная	в) антизависимость
	содержит последовательность	б) по выходным данным	
	операторов:	в) антизависимость	
	x = a + 2*b;		
	a = y/c;		
17	Чем отличаются графические	а) большим объемом кэш-	в) большим числом
	процессоры от универсальных?	памяти	процессорных ядер
		б) расширенным набором	
		команд	
		в) большим числом	
4.0		процессорных ядер	
18	Сколько потоков по	а) один поток	б) число потоков рано
	умолчанию формируется в	б) число потоков рано	числу процессорных
	параллельный секции	числу процессорных ядер в	ядер в системе
	программы на OpenMP?	системе	
		в) число потоков рано	
10	TO 1 2007	числу итераций цикла	6)) (5)
19	Какая функция в МРІреализует	a) MPI_Recv	б) MPI_Irecv
	неблокирующий прием	б) MPI_Irecv	
20	сообщения?	B) MPI_Recv_init	
20	Для чего используется	а) для более эффективной	а) для более
	динамическое (циклическое)	загрузки процессорных	эффективной загрузки
	распараллеливание?	ядер	процессорных ядер

б) для увеличения числа используемых потоков	
в) для решения проблемы	
синхронизации потоков	

Перечень контрольных вопросов для сдачи дифференцированного зачета:

1. Численное интегрирование уравнений движения частиц в молекулярно-динамической (МД) системе с применением разностных схем Эйлера и Верле (Leap-Frog).

Ответ: см. раздел 3.2 в п. 1списка основной литературы.

2. Выбор шага интегрирования и оптимальной разностной схемы. Точность сохранения полной энергии и импульса при моделировании изолированной системы.

Ответ: см. раздел 2.4 в п. 1списка основной литературы.

3. Парные потенциалы взаимодействия, формула для расчета сил взаимодействия между частицами. Затухание потенциала на больших расстояниях. Потенциал Леннарда-Джонса.

Ответ: см. раздел 3.3 в п. 1списка основной литературы.

4. Применение методов МД моделирования в биофизике и физике полимеров. Потенциалы для макромолекул с фиксированными химическими связями (forcefields). Многочастичные потенциалы Tersoffu EAM.

Ответ: см. раздел 9.2 в п. 1списка основной литературы.

5. Граничные условия для МД ячейки. Метод ближайшего образа. Критерии выбора числа частиц.

Ответ: см. раздел 3.4 в п. 1списка основной литературы.

6. Особенности расчета систем с кулоновским взаимодействием. Моделирование электролитов и неидеальной плазмы.

Ответ: см. раздел 13.1 в п. 1списка основной литературы.

7. Схема МД эксперимента. Как задать начальное состояние системы? Вывод МД системы на равновесие, использование термостатов.

Ответ: см. раздел 3.5 в п. 1списка основной литературы.

8. Моделирование неравновесных систем и релаксационных процессов. Роль усреднения по траекториям.

Ответ: см. раздел 7.1 в п. 1списка основной литературы.

9. Оптимизация расчета взаимодействий между частицами. Списки ближайших соседей (списки Верле) и метод связанных списков (linkedcells).

Ответ: см. раздел 3.7 в п. 1списка основной литературы.

10. Классификация вычислительных систем, таксономия Флинна. Примеры систем различного типа. Параллельные алгоритмы: распараллеливание по задачам и по данным.

Ответ: см. раздел 3.7 в п. 1списка основной литературы.

11. Параллельные системы с общей памятью (SMP): ограничение на количество процессоров, проблема когерентности кэша.

Ответ: см. раздел 13.1 в п. 2списка основной литературы.

12. Потоки (threads) и процессы (process) в многозадачных операционных системах. Различия в использовании потоков и процессов.

Ответ: см. раздел 13.1 в п. 2списка основной литературы.

13. Создание потоков с использованием POSIXThreads, передача входных и выходных данных потоков.

Ответ: см. раздел 15.11 в п. 2списка основной литературы.

14. Синхронизация потоков. Примеры ошибок, связанных с отсутствием синхронизации. Объекты синхронизации POSIXThreads: взаимное исключение (mutex), условная переменная (condvar).

Ответ: см. разделы 15.2-15.12 в п. 2списка основной литературы.

15. Принцип создания программ с использованием OpenMP. Общие и локальные переменные потоков. Директивы распараллеливания.

Ответ: см. разделы 8.2-8.5 в п. 2списка основной литературы.

16. Блочное и циклическое распараллеливание циклов. Алгоритмы распределения работы по потокам в OpenMP, директивы ompfor, ompsections и omptask.

Ответ: см. разделы 8.6-8.10 в п. 2списка основной литературы.

17. Параллельные системы с распределенной памятью (кластеры). Отличие методов параллельного программирования для систем с общей и распределенной памятью.

Ответ: см. раздел 16.1-16.2 в п. 2списка основной литературы.

18. Общая схема программы с использованием библиотеки МРІ. Компиляция и запуск МРІ-программ.

Ответ: см. разделы 9.1-9.2 в п. 2списка основной литературы.

19. Функции передачи сообщений между двумя процессами в MPI. Классификация функций по способу синхронизации. Блокирующие и неблокирующие функции приема-передачи в MPI.

Ответ: см. раздел 9.2 в п. 2списка основной литературы.

20. Способы передача разнородных данных в одном сообщении в МРІ. Функции коллективного обмена сообщениями в МРІ. Односторонние коммуникации в стандарте МРІ-2.

Ответ: см. разделы 9.4-9.5 в п. 2списка основной литературы.

21. Распараллеливание расчета взаимодействий между частицами в МД моделировании: декомпозиция по пространству и по частицам. Эффективность распараллеливания на кластерах с различной топологией коммуникационной сети.

Ответ: см. разделы 17.2-17.5 в п. 1списка основной литературы.

Перечень задач для сдачи дифференцированного зачета и экзамена:

1. Написать параллельную версию цикла с использованием директив OpenMP:

```
for(inti=0; i<n-1; ++i) {
    a[i] = f(i);
    b[i] = a[i+1]*a[i+1];
}
Решение:
    a[0] = f(0); b[n-2] = a[n-1]*a[n-1];
    #pragma omp parallel for
    for(inti=1; i<n-1; ++i) {
        b[i-1] = a[i]*a[i];
        a[i] = f(i);
}
```

```
2. Написать параллельную версию цикла с использованием директив ОрепМР:
     for(inti=1; i<n; ++i) {</pre>
       a[i] = f(i);
       b[i] = a[i-1]*b[i];
Решение:
    a[n] = f(n);
    #pragma omp parallel for
    for(inti=1; i<n-1; ++i) {
       a[i] = f(i);
       b[i+1] = a[i]*b[i+1];
    b[1] = a[0]*a[0];
    3. Написать параллельную версию цикла с использованием директив OpenMP:
     for(inti=4; i<n; ++i)</pre>
    a[i] = f(a[i-4]);
Решение:
    #pragma omp parallel for
    for(inti=4; i<n; i+=4)</pre>
    for (int j=0; j<4; ++j)
    a[i+j] = f(a[i+j-4]);
    4. Написать параллельную версию цикла с использованием директив OpenMP:
    for(inti=0; i<n-1; ++i)
       s += a[i]*a[i+1];
Решение:
    #pragma omp parallel forreduction(+:s)
    s = 0;
    for(inti=0; i<n-1; ++i)
       s += a[i]*a[i+1];
    5. Написать параллельную версию цикла с использованием директив OpenMP:
    for(inti=0; i<n-1; ++i)
    a[i] = f(a[i+1]);
Решение:
    for (inti=0; i < n-1; ++i) b[i] = a[i];
    #pragma omp parallel for
    for(inti=0; i<n-1; ++i)
    a[i] = f(b[i+1]);
    6. МРІ-программа содержит следующие определения и вызовы функций:
    MPI Comm size (MPI COMM WORLD, &size);
    MPI Comm rank (MPI COMM WORLD, &rank);
    doubledata = (rank == 0) ? 1.234 : 0;
Написать фрагмент программы, в которой когда каждый процесс с rank > 0 ожидает данные
(data) от процесса rank - 1, а затем передает их процессу rank + 1.
Решение:
    MPI Status stat;
    if(rank > 0)
    MPI Recv(&data, 1, MPI DOUBLE, rank-1, 0, MPI COMM WORLD, &stat);
    if(rank < size-1)</pre>
    MPI Send(&data, 1, MPI DOUBLE, rank+1, 0, MPI COMM WORLD);
    7. МРІ-программа содержит следующие определения и вызовы функций:
    MPI Comm size (MPI COMM WORLD, &size);
```

MPI Comm rank (MPI COMM WORLD, &rank);

```
doubledata = rank*rank;
```

Написать фрагмент программы, в которой каждый процесс с нечетным номером rankобменивается данными dataпроцессом с номером rank – 1 (считается, что всего запущено четное число процессов).

Решение:

```
MPI_Status stat;
MPI_Send(&data, 1, MPI_DOUBLE,
rank%2?rank - 1 : rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&data, 1, MPI_DOUBLE,
rank%2 ? rank - 1 : rank + 1, 0, MPI_COMM_WORLD, &stat);
```

8. МРІ-программа содержит следующие определения и вызовы функций:

```
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
doubledata = rank*rank;
```

Написать фрагмент программы, в которой каждый процесс с нечетным номером rankпередает данные dataпроцессу с номером rank -1 (считается, что всего запущено четное число процессов).

Решение:

```
MPI_Status stat;
if(rank % 2)
MPI_Send(&data, 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD);
else
MPI_Recv(&data, 1, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD, &stat);
```

9. МРІ-программа содержит следующие определения и вызовы функций:

```
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
doubledata = rank*rank;
```

Написать фрагмент программы, в которой каждый процесс с номером rank передает данные (data) процессу с номером rank + 1, а процесс с номером size - 1 предает данные процессу с номером 0.

Решение:

```
MPI_Status stat;
MPI_Send(&data2, 1, MPI_DOUBLE,
rank< size-1 ? rank+1 : 0, 0, MPI_COMM_WORLD);
MPI_Recv(&data2, 1, MPI_DOUBLE,
rank> 0 ? rank-1 : size-1, 0, MPI_COMM_WORLD, &stat);
```

10. Написать параллельную версию цикла с использованием библиотеки МРІ:

```
double s = 0;
for(inti=0; i<n; ++i) s += f(i);
```

После выполнения программы переменная s должна иметь результат вычислений b процессе c rank = b. Считается, чтолделится нацело на size.

Решение:

```
MPI_Statusstat;
double s, s1 = 0;
for(inti=rank*(n/size); i<(rank+1)*(n/size); ++i) s1 += f(i);
MPI Reduce(&s1, &s, 1, MPI DOUBLE, MPI SUM, 0, MPI COMM WORLD);</pre>
```

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Необходимое оборудование для лекций и практических занятий:

Компьютер и мультимедийное оборудование (проектор), учебный суперкомпьютерный кластер с удаленным доступом.

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. С.Г. Лисицын. Компьютерное моделирование задач молекулярной физики. Догопрудный: Интеллект, 2019. 142 с.
- 2. Б.Н. Галимзянов, А.В. Мокшин Основы моделирования молекулярной динамики: учебное пособие. Ижевск: Институт компьютерных исследований, 2018. 106 с
- 3. Р. Роберт, 3. Джулиана. Параллельные и высокопроизводительные вычисления. М.: ДМК Пресс, 2022. 800 с.
- 4. А.А. Малявко. Параллельное программирование на основе технологий OpenMP, CUDA, OpenCL, MPI. 2-е изд., испр. и доп. М.: Юрайт, 2022. 136 с.
- 5. С.А. Лупин, М.А. Посыпкин. Технологии параллельного программирования: учебное пособие. М.: Форум, 2020. 206 с.
- 6. В.П. Гергель, А.В. Сысоев. Высокопроизводительные параллельные вычисления: 100 заданий для расширенного лабораторного практикума. М.: Физматлит, 2018. 248 с.
- 7. С.В. Борзунов, С.Д. Кургалин, А.В. Флегель. Практикум по параллельному программированию. С.-Петербург: БХВ-Петербург, 2017. 236 с.

Дополнительная литература:

1. Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика в 10 т. – 6-е изд., испр. – М.: Физматлит, 2021. – Т. 5. Статистическая физика, Ч.1. – 620 с.

Электронные ресурсы, включая доступ к базам данных и т.д.:

- 1. Сайт Лаборатории параллельных информационных технологий НИВЦ МГУ, URL: http://parallel.ru
- 2. Официальная документация по MPI: https://www.mpi-forum.org/docs/ (на англ. языке)
- 3. Официальная документация по OpenMP: http://www.openmp.org (на англ. языке)
- 4. Официальный сайт Nvidia CUDA, URL: https://developer.nvidia.com/cuda-zone
- 5. Официальная страница проекта LAMMPS, URL: http://lammps.sandia.gov (на англ. языке)

Перечень используемых информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы:

Для удаленного доступа к учебному вычислительному кластеру используются программы PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/) и WinSCP (http://winscp.net/). Также в процессе выполнения практических заданий студенты используют пакет программ молекулярно-динамического моделирования LAMMPS (http://lammps.sandia.gov/). На вычислительном кластере должны быть установлены: ОС Linux, компилятор GNUCCompiler, библиотека OpenMPI, систем очередей заданий PBS/SLURM. Указанные программы являются свободно распространяемыми и не требуют приобретения лицензии.

11. Язык преподавания – русский.

Программу составил: Морозов И.В., к.ф.-м.н., доцент

«19» декабря 2022г.